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ABSTRACT

This project involves the design of a Decimation filter for a High speed ∆Σ Ana-

log to Digital converter with a sampling frequency of 1GHz. Decimation by a

factor 25 is implemented in a cascade of two stages, each stage decimating by

a factor 5. Polyphase decomposition reduces the maximum operating frequency

to 200MHz so that the entire design can be implemented with 0.18µm stan-

dard cell library. Appropriate grouping of partial products reduces the number

of explicit additions/mutliplications and minimizes the power consumption. The

design is implemented in 0.18µm CMOS process from UMC. It occupies an area

of ≈ 758 × 650. The design consumes a total power of about 18.887 mW(mostly

dynamic power) from a 1.8V supply. The simulated SNR for the Decimation filter

is 93.0482 dB when fed from the output of an ideal ∆Σ modulator.
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6.4 Circuit implementation of Ĝ4(z) . . . . . . . . . . . . . . . . . . 84
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CHAPTER 1

Introduction

1.1 Motivation

Even though all the real world signals are inherently analog, we convert them

into digital form since digital signals can be processed using robust and reliable

digital signal processing (DSP) techniques. Also digital signals are less susceptible

to noise and are easier for computations. Therefore, analog-to-digital conversion

becomes a crucial part in today’s Systems-on-Chip(SoCs).

Oversampling ∆Σ ADCs have found increasing use in modern electronic com-

ponents. Oversampling of signal greatly relaxes the anti-aliasing filter and the

reconstruction filter requirements. Also with its noise-shaping technique shown in

Figure 1.1, the ∆Σ modulation gives high resolution for modern day ADCs[1].

Once the quantization noise is shaped out of the passband as shown in Fig-

ure 1.1, a low pass filter(LPF) is required to remove the out of band components

and a decimator is needed to the bring the sampling rate back to the Nyquist

rate from the oversampled rate. Both these tasks are performed by a decimation

filter, which as its name suggests, low pass filters and decimates (brings down the

sampling rate) the input signal.

The aim of this project is to design a low power decimation filter for a high

speed ∆Σ modulator. It becomes clear that for a decimation filter to work in the

Gigahertz range, the conventional architectures of the decimation filter cannot be

used. So the issues involved in the design of high speed decimation filters are

considered before going to the details of the design. Since the low pass filtering

and the decimation are performed on the output signal of the ∆Σ modulator, the

entire decimation filter system works in the digital domain.



Σ L(z)
u[n] v[n]y[n]

Asin(ω)

ω=2π(fin/fs)
where

fB

 OSR

LPF Decimator

Decimation filterDelta-Sigma Modulator (DSM)

fB fB

Digital output

shaped out of signal band
with out of band noise
removed

of DSM with quantization noise
Digital outputDiscrete time

analog input

fB fs/2fs/2fs/2

Figure 1.1: Block diagram of decimation filter for a ∆Σ modulator. fB is the
maximum inband frequency. OSR = Oversampling ratio.

1.2 Organization

Chapter 2 introduces the basics of Delta Sigma Modulation(DSM), decimation

and decimation filter design. Specifications of the ∆Σ modulator and decimation

filter are considered and a final two stage design of decimation filter is derived.

Possible architectures for decimation filters are also discussed.

Chapter 3 gives the details of the circuit implementation of the first stage of the

decimation filter involving a sinc filter. Challenges involved in implementing the

sinc filter in polyphase architecture are discussed in detail.

Chapter 4 discusses the design details of of the second stage FIR filter of the

decimation filter.

Chapter 5 discusses the design and implementation of the decimators and clock

dividers used in the decimation filter.

Chapter 6 explains the design of a decimation filter with minimal passband

2



droop.

Chapter 7 concludes the thesis with simulation results after synthesis, placement

and routing.
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CHAPTER 2

Decimation Filter Design and Architecture

2.1 Decimation filter fundamentals

There are many applications where the signal at a given sampling rate needs to be

converted to another signal with a different sampling rate. Discrete-time systems

with unequal sampling rates at various parts of the system are called multirate

systems. The process of reducing the sampling rate is generally called decimation,

and the multirate structure used for decimation is called decimator. Accompanying

a decimator is usually a low pass filter, which along with the decimator makes a

decimation filter. In this chapter, the basic theory of decimation filters and their

application in ∆Σ modulation are discussed.

2.1.1 Time domain characteristics

To change the sampling rate of a digital signal, multirate digital signal processing

uses an up-sampler or down-sampler. These are two basic sampling rate alter-

ation devices apart from adders, multipliers, delay elements required in multirate

systems. To reduce the sampling rate or to decimate a signal, we need a down-

sampler, the time domain definition of which is given in (2.1).

y[n] = x[nM ] (2.1)

where M is the down-sampling or decimation factor. In English, (2.1) means that

output y[n] is one out of every M samples of x[n] or every M th sample of x[n]. The

block diagram representing the process of down-sampling is given in Figure 2.1.

Down-sampling is further illustrated in Figure 2.2 for a sinusoidal signal with



x[n] M y[n]

Figure 2.1: Block diagram of a down-sampler or decimator with down-sampling
or decimation factor M

amplitude 1. Here the value of M = 2 and the process of down-sampling is

accomplished by selecting every 2nd (M th) sample.

0 5 10 15 20
−1

−0.5

0

0.5

1

n

x[
n]

Input signal to the down−sampler

0 2 4 6 8 10
−1

−0.5

0

0.5

1

n

y[
n]

Output of the down−sampler with M = 2

Figure 2.2: Down-sampling a discrete-time sine wave by a factor, M = 2
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2.1.2 Frequency domain characteristics

Applying z-transform to the input-output relation given in (2.1), we get

Y (z) =

∞
∑

n=−∞

x[nM ]z−n (2.2)

Expression Y (z) in terms of X(z) is derived to be [2]

Y (z) =
1

M

M−1
∑

k=0

X(z1/Mej2πk/M) (2.3)

Despite the complicated expression of Y (z) in (2.4), the effect of down-sampling

in the frequency domain can be understood easily by considering the simple case

of M = 2. For M = 2, z = ejω, we get

Y (ejω) =
1

2

(

X(ejω/2) + X(−ejω/2)
)

(2.4)

Equation (2.4) shows that the frequency response of the output of the down-

sampler with M = 2 consists of two terms. First term X(ejω/2) is the frequency

response of the input signal, X(ejω) stretched along ω-axis by a factor of two

and the second term X(−ejω/2) is simply the first term shifted by 2π along ω

axis (Figure 2.3) i.e.

X(−ejω/2) = X(ej(ω+2π)/2) (2.5)

From Figure 2.3, it is clear that aliasing can occur if down-sampling results in

a sampling rate less than the Nyquist rate. In the figure, input has a sampling

rate twice the Nyquist rate and down-sampling results in Nyquist rate. Thus if

you down-sample by any factor greater than 2, it will cause aliasing. For a general

value of M, Y (ejω) is a sum of stretched and shifted versions of X(ejω) scaled by

a factor M.

6



0 π/2−π/2−π π 2π−2π

X(ejω)

0 π/2−π/2−π π 2π−2π

Y(ejω)

X(ejω/2)

ω

ω

X(-ejω/2)X(-ejω/2)

Figure 2.3: Effect of down-sampling by a factor M=2 in frequency domain

2.1.3 Cascade equivalence of decimation filters

Basic sampling rate alteration devices like down-samplers and components of LTI

digital filters forms multirate systems. In most applications, these two appear

in cascade as shown in Figure 2.4. An interchange in the position in a cascade

can sometimes lead to computationally efficient realizations. A particularly useful

cascade equivalence property for our design is shown in Figure 2.4 and the equiv-

alence can be proved by showing that the z-domain transfer function of y1[n] and

y2[n] are identical.

H(zM)

H(z)M
w1[n]

w2[n]

y1[n]

y2[n]

x[n]

x[n]
M

(a)

(b)

Figure 2.4: Cascade equivalence of decimation filter
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Two decimators in Figure 2.4 give

w1[n] = x[nM ] (2.6)

y2[n] = w2[nM ] (2.7)

Recalling the input-output relation of a down-sampler in (2.4), the cascade in

Figure 2.4(a) in z-domain gives

W1(z) =
1

M

M−1
∑

k=0

X(z1/Mej2πk/M) (2.8)

Y1(z) = W1(z)H(z) (2.9)

Cascade in Figure 2.4(b) in z-domain gives

W2(z) = X(z)H(zM ) (2.10)

Y2(z) =
1

M

M−1
∑

k=0

W2(z
1/Mej2πk/M) (2.11)

Substituting the expression for W2(z) in that of Y2(z), we get

Y2(z) =
1

M

M−1
∑

k=0

X(z1/Mej2πk/M)H(zej2πk) (2.12)

=
1

M

M−1
∑

k=0

X(z1/Mej2πk/M)H(z) (2.13)

= W1(z)H(z) (2.14)

= Y1(z) (2.15)

Thus the equivalence of y1[n] and y2[n] are proved[2]. As we will see later, this

cascade equivalence property is crucial in implementing the decimation filter using

polyphase decomposition.
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2.2 ∆Σ modulator specifications

As we have stated in chapter 1, the goal of this project is to design a decimation

filter for a ∆Σ modulator. So before we set about designing the decimation filter,

the specifications of the ∆Σ modulator which has already been designed, taped

out and tested has to be stated and understood. The output of the ∆Σ modulator

which has to be filtered and decimated should be generated from a model since it

is this same output that forms the input to the required decimation filter.

Σ L(z)
u[n] v[n]y[n]

Asin(ω)
where

20 MHz

 25

LPF Decimator

Decimation filterDelta-Sigma Modulator (DSM)

Digital output

shaped out of signal band
with out of band noise
removed

of DSM with quantization noise
Digital outputDiscrete time

analog input

ω=2π(fin/fs)

20
MHz

16-level quantizer

4

20
MHz

20
MHz

1GHz 40MHz

MHz
500

MHz
500

MHz
500

MHz
40

Figure 2.5: Block diagram of a decimation filter for the ∆Σ modulator with
OSR = 25, fs = 1GHz fB=20MHz and 4-bit output.

The ∆Σ modulator for which the decimation filter has to be designed has a

sampling frequency, fs = 1GHz and OSR 25 with a 4-bit output. The general

block diagram of a ∆Σ modulator and its decimation filter shown in Figure 1.1

is redrawn here in Figure 2.5 for our particular case. The ∆Σ modulator has an

OSR = 25 and gives a 4-bit output. The Over-Sampling Ratio or OSR = 25

9



means that the sampling rate is 25 times the Nyquist frequency. So to bring the

system back to Nyquist rate after decimation, we have to decimate by a factor

25. The maximum frequency component present in the input signal or the input

bandwidth, fB can be calculated as shown below. Since fs = OSR× Nyquist rate,

fs = OSR × 2fB (2.16)

=⇒ fB =
fs

2 × OSR
=

1 GHz

50
= 20 MHz (2.17)

After the ∆Σ modulation, the quantization noise will be shaped out of the

signal band and thus the decimation to Nyquist rate should be accompanied by

low pass filtering which removes the out of band noise components. Since the

input bandwidth is 20MHz, we essentially need a structure with a low pass filter

with passband 20MHz and a decimator with decimating factor 25. The output of

the decimation filter will be a digital signal with sampling rate 1GHz/25 =40MHz

which is the Nyquist rate.

The noise-shaping of the modulator is determined by the Noise-Transfer Func-

tion or NTF of the ∆Σ modulator. The NTF of the ∆Σ modulator in question is

given in (2.18) and the magnitude response of this NTF is shown in Figure 2.6.

NTF (z) =
(1 + 1.352z−1)(1 − 1.998z−1 + z−2)(1 − 1.988z−1 + z−2)

(1 − 1.204z−1 + 0.3771z−2)(1 − 1.43z−1 + 0.6585z−2)
(2.18)

To generate the input signal for the decimation filter, the ∆Σ modulator with

the NTF defined in (2.18), OSR 25 and a 16-level quantizer is modelled and

simulated in MATLAB using Schreier’s Delta Sigma Toolbox[3]. An input sig-

nal A sin(2π(fin/fs)n) is given to the modulator with the value of A chosen to

be slightly less than the Maximum Stable Amplitude or MSA of the modulator.

Considering that the OSR is 25, which means the decimation factor is also 25, it

is better to have the number of input points and FFT bins of the form 5n. Thus

10
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Figure 2.6: Magnitude response of the NTF of the ∆Σ modulator.
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Figure 2.7: Output of the ∆Σ modulator or equivalently the input of the Decima-
tion filter.
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a 57-point FFT of the output of the ∆Σ modulator is shown in Figure 2.7.

For this design of the ∆Σ modulator, the maximum SNR after decimation and

low pass filtering can be calculated. Assuming an ideal low pass filter with sharp

response, SNR can be calculated using the simulateSNR command in the Delta-

Sigma toolbox. The maximum possible SNR we can get after decimation filter is

calculated to be 96 dB.

2.3 Multi-stage decimation filter

A general decimation filter that we have considered so far, as shown in Fig-

ure 2.8(a) is a single stage structure where the basic scheme for sampling alteration

involves a single filter H(z) and a single decimator of factor M. Now consider the

case where M can be factorized into M1 × M2 × ... × Mn. Then we can imple-

ment the same structure in n stages as shown in Figure 2.8(b). This is called the

multi-stage implementation of decimation filter[4].

x[n] y[n]H(z) M

x[n] H1(z) M1 H2(z) M2 Hn(z) Mn
y[n]

(a) Single stage implementation

(b) Multi-stage implementation

When M = M1 X M2 X .. .   .  Mn 

Figure 2.8: Single stage and Multi-stage implementation of a decimation filter
with decimating factor M = M1 × M2× .. . Mn.

It is shown that it is computationally efficient to implement the decimation

filter in multiple stages than in a single stage. This is true despite the increase in

the number of filters in multi-stage implementation because in Figure 2.8(b) the

frequency of operation decreases as we go from H1(z) to Hn(z) and the power dis-

12



Table 2.1: Assumed parameters for the LPF in the single stage implementation
shown in Figure 2.9 to estimate order, N

Filter parameter value
Passband ripple, δp 1 dB
Stopband ripple, δs 1 dB
Passband edge, fp 19MHz
Stopband edge, fs 21MHz

sipation of the digital filters is directly proportional to the frequency of operation.

Apart from this, it is also possible to exploit the fact that steep filter responses

are not necessary in the initial stages resulting in lower order filters operating at

higher frequencies and higher order filters operating at lower frequencies. This

makes the overall decimation filter better off.

Since the required decimation factor 25 can be written as 5 × 5, it is possible

to implement the decimation filter in two stages. In this section, we discuss the

advantages of implementing the filter in two stages over a single stage.

2.3.1 Single stage implementation

Consider the single stage decimation filter shown in Figure 2.9(a). A simple for-

mula to estimate the order of an FIR filter is Kaiser’s formula [2] given in (2.19).

The assumed parameters for the filter H(z) are given in Table 2.1.

N ∼=
−20 log10(

√

δpδs) − 13

14.6(ωs − ωp)/2π
(2.19)

For the assumed parameters given in Table 2.1, Kaiser’s formula gives a value

of the order of the filter N ≈ 240. Thus the approximate number of multiplications

per second R1, when this filter is implemented is

R1 ≈
N

2
× 40 MHz = 4.8 × 109 s−1 (2.20)
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25x[n]

x[n]

 Since 25 = 5 X 5

(a) Single stage decimation filter

(b) Two-stage decimation filter

20 MHz

1

500MHz

LPF

20 MHz

1

500MHz

1

500MHz20020

40

100 180

5 5

Stage 2 : FIR LPF of order N2

y[n]

y[n]

Stage 1 : FIR LPF of order N1

Stage 1 : LPF of order N

H1(z) H2(z)

H(z)

Figure 2.9: Single stage vs Two stage implementation of decimation filter.
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Note the division by 2 in calculating R1, which is due to the symmetry of the

linear phase FIR filter coefficients.

2.3.2 Two stage implementation

The only way the decimation factor 25 can be factorized into integers is 5 × 5.

With this in mind, consider the two stage structure shown in Figure 2.9(b). The

first stage will bring down the sampling rate to 200MHz and second stage to

40MHz. Unlike the single stage structure, where the transition of the LPF from

passband to stopband needs to be really sharp to avoid aliasing to the passband,

in a two stage structure, only the transition of second stage FIR filter needs to

be sharp. As shown in Figure 2.9, the transition band of the first stage filter can

extend from 20MHz to as large as 180MHz and still there will not be any aliasing

to the passband. By exploiting this fact, we can greatly reduce the computational

complexity of the decimation filters[4].

Assuming the same ripple values in Table 2.1 for FIR filters in two stage also,

the approximate orders, N1 and N2 for the first and second stage FIR filters can

be calculated using Kaiser’s formula to be 3 and 47 respectively. The order of the

first stage is as low as three because of the large transition band extending from

20MHz to 180MHz. The total number of multiplications per second, R2 in two

stage implementation thus becomes

R2 =
N1

2
× (200 MHz) +

N2

2
× (40 MHz) (2.21)

=
3

2
× (200 MHz) +

47

2
× (40 MHz) (2.22)

= 1.24 × 109 s−1 (2.23)

This preliminary analysis shows that number of multiplications per second

required for two stage implementation is much lower(less by a factor R1/R2 ≈ 3.9)

than that required for a single stage implementation i.e. it is computationally

efficient to implement the required decimation filter in two stages. Due to myriad
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reasons, it is conventional to use a sinc filter in the first stage of a multi-stage

decimation filter[5][6]. Thus in this design also we will use a sinc filter for the first

stage.

The entire decimation filter has now become a two stage system with a sinc

filter in the first stage and an FIR filter in the second. For both stages, decimating

factor is 5 (Figure 2.10).

x[n]

500MHz

5 5
y[n]

20 
 MHz

Stage 2 : FIR LPF of order N2Stage 1 : Sinc filter

500MHz20 
 MHz

1GHz 200
MHz

40
MHz

Figure 2.10: Block diagram of the two stage decimation filter.

As we will see later on, one of the main reasons to use a sinc filter in first stage,

the simple architecture, breaks down due to the high speed requirement(1GHz)

of this design. Thus we are actually free to use any FIR filter for the first stage.

2.4 Sinc filter characteristics

Sinc filter is proven to be very efficient for the first stage in a multi-stage decimator

and can be used to decimate to a rate four times the Nyquist rate[5][6]. Since

OSR is 25, the fact that a sinc filter can be used to decimate to four times the

Nyquist rate means that the decimation factor in first stage, M1 can be as high

as 25/4 = 6.25. i.e. M1 should be ≤ 6.25. Since both M1 = M2 = 5 in our case,

this condition is met. Thus a sinc filter can be used as the first stage FIR filter

in the two stage implementation scheme and it will decimate the sampling rate to

five times the Nyquist rate. A general sinc filter Hs(z) of order K with (r × M)
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taps is of the form

Hs(z) =

(

1

rM

(

1 − z−rM

1 − z−1

)

)K

(2.24)

where the nulls are at ±l(fs/rM) where l = 1, 2, . . rM-1 as shown in Figure 2.11.

Note that

(

1 − z−rM

1 − z−1

)

= 1 + z−1 + z−2 . . . z−(rM−1) (2.25)

Thus a sinc filter of order K is simply K moving average filters in cascade.

Now consider the input signal of bandwidth 20MHz in Figure 2.11. From

section 2.1.2, we know that when decimated by a factor of 5, noise at the fre-

quencies in the range (200 − 20)MHz < f < (200 + 20)MHz, (400 − 20)MHz

< f < (400 + 20)MHz will alias into the passband (±20MHz of fs/M ,2fs/M . . .

because signal bandwidth is only 20MHz).

20

r = 2 , M = 5

Maximum

Worst case
alias rejection

when decimated
by a factor M

Noise that will alias
into the passband

0 dB

f
200180 220 380 420400100 300 500

frequency in MHz

Passband
droop

Figure 2.11: Frequency response of sinc filter showing noise aliasing to the pass-
band. Diagram is not to scale.
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Table 2.2: Variation of maximum droop and worst alias attenuation with the value
of r (K=4, M=5).

Value of r Maximum passband
droop at fB

Worst alias rejection
at (fs/M − fB)

1 -0.5507 dB -75.04 dB
2 -2.2950 dB -76.79 dB
3 -5.2840 dB -79.78 dB
4 -9.6600 dB -84.15 dB

The decimation factor, M of the decimator which follows the sinc filter is fixed

to be 5. Value of r has to be chosen after considering the passband droop of sinc

filter into account. Droop is the deviation of the sinc filter response from the ideal

value of unity (0 dB) in the passband. The maximum passband droop occurs at

fB = 20MHz. The worst case alias rejection is the attenuation at the frequency

(200 − 20)MHz = 180MHz. Passband droops and worst case alias rejection for

different values of r (for K = 4, M = 5) are shown in Table 2.2. The plots of

fourth order sinc filter frequency responses for r = 1, M = 5 (5 taps) and r = 2,

M = 5 (10 taps) are compared in Figure 2.12.

Usually a maximum passband droop of 3dB or above is difficult to correct

using an equalizer[7, p. 15]. So from Table 2.2, it is clear that we can choose r

to be one or two. The value of r is chosen to be 2 since this will greatly relax

the requirements of the second stage FIR filter. For r = 2, passband droop is

about 2.4 dB as shown in Figure 2.13. However if a lower droop is required, a five

tap filter has to be chosen, the details of which are discussed in chapter 6. Alias

rejection and droop increase as K increases. A fourth order sinc filter is found to

be sufficient to meet the SNR requirement in the final stage. So K is chosen to be

4. Thus the final transfer function of the sinc filter becomes

Hs(z) =

(

1

10

(

1 − z−10

1 − z−1

)

)4

(2.26)
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r=1 or five taps
r=2 or ten taps

Figure 2.12: Frequency responses of sinc filter as given in (2.26) with r = 1 and
r = 2. For both responses, K = 4, M = 5. Note that for the 10-tap
filter alias rejection is better but passband droop is higher.

For z = ejω,

Hs(e
jw) =

(

1

10

(

sin(10ω/2)

sin(ω/2)

)

)4

(2.27)

The frequency response of the sinc filter given in (2.27) is plotted in Figure 2.12.

The maximum passband droop and worst case alias rejection for the chosen sinc

filter are shown in Figure 2.13.

As we have mentioned before, the input to the sinc filter is the output from the

DSM. Since we have designed the sinc filter for a 4-bit unsigned input, the output

from the DSM has to be scaled and offset. The output of DSM corresponding

to an input signal A sin(2π(fin/fs)n) is given as the input to the sinc filter. The

output signal after the sinc filtering and decimation is shown in Figure 2.14.

The SNR after sinc decimation is calculated to be 54.69dB. This 14-bit output

forms the input to the second stage of the decimation filter.
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Figure 2.13: Maximum passband droop and worst case alias rejection for sinc filter
with K = 4, r = 2, M = 5 given in (2.26).
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20



2.5 FIR filter characteristics

The ideal FIR filter response should be as shown in Figure 2.10. It is required that

after the second stage FIR filter, the decimation filter should meet the specification

of 93 dB SNR at the output. The input of the FIR filter is the output of the first

stage sinc filter. This output is derived for an input sinusoidal signal of frequency

≈ 17.5MHz (1367th bin) and is plotted in Figure 2.14. This signal when passed

through the stage 2 FIR filter and decimator should give a signal of 93 dB SNR.

Considering all this, we can set about to determine the FIR filter coefficients.

2.5.1 Determining the FIR filter coefficients

FIR filter coefficients are determined using Parks-McClellan optimal FIR filter

design algorithm. This can be done in MATLAB using two commands firpmord

and firpm. This command uses the Remez exchange algorithm and Chebyshev

approximation theory to design filters with an optimal fit between the desired

and actual frequency responses. The filters are optimal because the maximum

error between the desired frequency response and the actual frequency response is

minimized.

Our aim is to use the Parks-McClellan algorithm to obtain an FIR filter Hpc(z)

of minimum order which meets the SNR requirement. The basic filter parameters

used to design the filter Hpc(z) are given in Table 2.3. Since the order of an FIR

filter increases with lesser passband ripple, steeper transition and higher stopband

attenuation, the values in Table 2.3 are found using trial and error so that the

order of Hpc(z) is as low as possible while still meeting the SNR requirement at

the output.

MATLAB commands firpmord and firpm returns an FIR filter of order 60.

The frequency response of the FIR filter, Hpc(z) is shown in Figure 2.15 and

Figure 2.16.

From Figure 2.16, it can be seen that the stop band attenuation is around
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Table 2.3: Parameters for the FIR filter Hpc(z)

Passband ripple, δp < 1 dB
Stopband attenuation, δs 50 dB
Passband edge, fp 18.25MHz
Stopband edge, fs 24MHz
Sampling frequency, fs 200MHz
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Figure 2.15: Normalized frequency response of the FIR filter Hpc(z) obtained using
MATLAB.
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23



2 4 6 8 10 12 14 16 18 20
−6

−5

−4

−3

−2

−1

0

1

2

Frequency, f in MHz

M
ag

ni
tu

de
 in

 d
B

Sinc and 60th order FIR response in passband

 

 
sinc
FIR

Figure 2.17: Droop of 4th order 10-tap sinc filter and FIR ripple within passband
20MHz. Note that the FIR filter ripple is within 1 dB.

24



50 dB, transition band is between 18MHz and 24MHz. A closer look of the pass-

band frequency response of both FIR filter in second stage and sinc filter in first

stage given in Figure 2.17 reveals that the passband ripple of FIR filter along

with the passband droop of the sinc filter deteriorates the response for frequencies

closer to 20MHz.

2.5.2 Sinc and FIR filter frequency responses

To put the entire decimation filter in perspective, the normalized frequency re-

sponses of both the FIR filter and the sinc filter are plotted in the same graph in

Figure 2.18. Note that FIR filter transition is much more steeper than that of the

sinc filter. The output of the decimation filter after the second stage FIR filtering

and decimation for an input sinusoidal signal of frequency ≈ 17.5MHz(1367th bin)

is shown in Figure 2.20.

50 100 150 200 250 300 350 400 450 500

−100

−80

−60

−40

−20

0

Frequency, f in MHz

M
ag

ni
tu

de
 r

es
po

ns
e 

in
 d

B

10−tap fourth order sinc filter and 60th order FIR filter responses

Figure 2.18: Frequency response of the 60th order FIR filter Hpc(z) and the 4th

order 10-tap sinc filter super imposed. Note that half the sampling
rate is 100MHz and 500MHz for FIR and sinc respectively.
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2.5.3 64th order FIR filter

Note that the sinc filter in (2.26) can be written as

Hs(z) =

(

1

10

(

1 − z−10

1 − z−1

)

)4

(2.28)

=

(

1

10

(

(1 − z−5)(1 + z−5)

1 − z−1

)

)4

(2.29)

This factorization of (1 − z−10) into (1 − z−5)(1 + z−5) helps us to exploit the

cascade equivalence discussed in section 2.1.3 and the factor (1+z−5)4 can thus be

pushed to the lower frequency side(200MHz) as shown in Figure 2.19 to become

(1 + z−1)4. This leaves only a scaled fourth order sinc filter with 5 taps operating

at 1GHz.

The 60th order FIR filter obtained using Parks-McClellan algorithm, Hpc(z)

can be multiplied with the factor (1 + z−1)4 pushed from the sinc stage. This

makes the order of the final FIR filter, Hf(z) in (2.30) 64. This is illustrated in

Figure 2.19. The combined frequency response of two stages of the decimation

filter is a fourth order sinc filter with 10 taps in cascade with 60th order Hpc(z) or

equivalently a fourth order sinc filter with 5 taps in cascade with 64th order Hf(z).

Hf (z) = Hpc(z) × (1 + z−1)4 (2.30)

=

k=63
∑

k=0

hfkz
−k (2.31)

If we choose to implement (1 + z−1)4 and Hpc(z) separately, (1 + z−1)4 has

to operate at 200MHz, on the other hand, if Hpc(z) and (1 + z−1)4 are clubbed

together to form a single filter Hf(z), all the computations can be done at a lower

rate of 40MHz as we will see in the later sections. Thus it is advantageous to

implement (1 + z−1)4 and Hpc(z) as a single FIR filter Hf(z).
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Figure 2.19: The factor (1 + z−1)4 pushed to the low frequency side of the sinc
filter is combined with the 60th order FIR filter to get a 64th order
FIR filter

2.5.4 Finite precision of the FIR filter coefficients

Since we are implementing the combined 64th order FIR filter Hf(z), the coeffi-

cients are obtained by performing the multiplication Hpc(z)× (1 + z−1)4 shown in

(2.30). The 64 coefficients in (2.31) given in Table 2.4 are then scaled such that

|hfk| ≤ 1. i.e. the scaling factor F1 = 1/(max(|hfk|)).

hf ′

k = hfk × F1 (2.32)

= hfk ×
1

max(|hfk|)
(2.33)

= hfk ×
1

3.0035
(2.34)

Even though MATLAB gives filter coefficients to 64-bit precision, fortunately

it is not necessary to do 64-bit multiplications. A finite precision much lower than

64 bits is actually sufficient to meet the SNR requirement. To find out the required
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number of bits to represent the FIR filter coefficients,

1. Scale the coefficients hf ′

k again by a scaling factor F2 = 2n.

2. Round (hf ′

k × 2n) to the nearest integer.

3. Calculate SNR.

Repeat this process for n = 1, 2, . . . . After a few iterations it is found that the

SNR criterion of the decimation filter is met only if n ≥ 10. Thus the value of n

is chosen to be 10 or in other words, the FIR filter coefficients can be represented

in atmost 10 bits. Scaling of the filter coefficients is summarized below.

hf ′′

k = hf ′

k × F2 (2.35)

= hfk ×
210

3.0035
(2.36)

= hfk × 340.9366 (2.37)

The new scaled coefficients are given in Table 2.4. Note that the division by

max(|hfk|) while scaling makes sure that the largest FIR filter coefficient after

scaling will be the largest possible number that can be represented in 10 bits (i.e.

1024). The FFT of the decimation filter output with 10-bit precision FIR filter

coefficients is given in Figure 2.20. SNR calculated from this FFT for an input

signal at 1367th bin is 93 dB.

2.6 Architecture

The conventional architecture used to implement the sinc filter in the first stage of

a decimation filter is the Cascade Integrator Comb(CIC) or Hogenauer structure.

In this section the limitations of CIC implementation at high speeds is discussed.

Since the second stage FIR filter works at a lower sampling rate, its architecture

is less crucial and a direct form implementation of FIR filters usually suffices.
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Table 2.4: Finite precision FIR filter coefficients. Only 32 filter coefficients are
shown because of the symmetry hk = h63−k, k = 0, 1, . . . 63

hfk Value of hfk hf ′′

k = hfk × 340.9366 round(hf ′′

k )
hf0 0.003453128632484 1.1773 1
hf1 0.017459621385645 5.9526 6
hf2 0.039133310612196 13.3419 13
hf3 0.053315357077549 18.1771 18
hf4 0.049194153841569 16.7720 17
hf5 0.022826019450836 7.7822 8
hf6 -0.026726821644420 -9.1121 −9
hf7 -0.091379259526725 -31.1545 −31
hf8 -0.152588887407698 -52.0231 −52
hf9 -0.187513355588177 -63.9302 −64
hf10 -0.177614450723896 -60.5553 −61
hf11 -0.117651625377535 -40.1117 −40
hf12 -0.021138111557846 -7.2068 −7
hf13 0.080997947545488 27.6152 28
hf14 0.149548722242695 50.9866 51
hf15 0.151726477066279 51.7291 52
hf16 0.076271160792871 26.0036 26
hf17 -0.057406812101084 -19.5721 −20
hf18 -0.201111667924139 -68.5663 −69
hf19 -0.292186843342283 -99.6172 −100
hf20 -0.276829023603923 -94.3811 −94
hf21 -0.134665635427954 -45.9124 −46
hf22 0.104952878889345 35.7823 36
hf23 0.362737737201257 123.6706 124
hf24 0.528036189800425 180.0269 180
hf25 0.492153423628284 167.7931 168
hf26 0.186382819150577 63.5447 64
hf27 -0.388185540468529 -132.3467 −132
hf28 -1.150402802168458 -392.2144 −392
hf29 -1.953771295922935 -666.1122 −666
hf30 -2.623248549904323 -894.3615 −894
hf31 -3.003490924493843 -1024.0000 −1024
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Figure 2.20: FFT of the output signal after FIR filter and decimator

2.6.1 Hogenauer structure for sinc filter

Consider the transfer function of the sinc filter obtained in (2.26). It can be

decomposed as shown in Figure 2.21 into accumulators(or integrators) 1/(1 −

z−1) and differentiators(or comb filters) (1 − z−2). The accumulator 1/(1 − z−1)

can be pipelined and retimed to get z−1/(1 − z−1). This leads to the classic

Hogenauer structure[6] or CIC(Cascaded Integrator Comb) structure of the sinc

filter as shown in Figure 2.22.

The popularity of the sinc filter as the first stage of the decimation filter has

much to do with this elegant architecture. As you can see, the whole filter can

be implemented using two repetitive blocks. Accumulators and differentiators.

The minimum width of the accumulator adder, BA, so that there is no loss of

information at the output is calculated using the formula[6]

BA = Bin + K log2 M (2.38)
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Figure 2.21: Decomposition of sinc decimation filter which leads to CIC implemen-
tation. Note that there is a cascade of 4 accumulators 1/(1− z−1) at
1GHz and a cascade of 4 differentiators (1 − z−2) at 200MHz.
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Figure 2.22: Sinc decimation in Hogenauer or CIC architecture
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where Bin is the number of bits at the input, K the order of the sinc filter and M,

the decimation factor of sinc filter. Substituting the values, Bin = 4, M = 5, K =

4, we get BA = 14.

From the CIC structure, it is clear that the speed at which the sinc filter can

work is limited by the adder in the accumulator block. The fastest N-bit adder

architecture has its delay proportional to log2N . (Carry look ahead adder is not

practical for N>4). So for high sampling rates, we can hardly go for accumulators

implemented using conventional N-bit adders. An architectural technique suitable

for high speed decimation filters called the polyphase decomposition is discussed

in the next section.

2.7 Decimation filter using polyphase decompo-

sition

In section 2.1.3, the cascade equivalence property of decimation filters is proven.

The property literally means that a filter H(zM ) before a decimator with dec-

imation factor M is equivalent to a filter H(z) if it comes after the decimator.

This property is significant due to the fact that a filter after decimator works at

a lower frequency and thus has less stringent timing constraints and lower power

consumption. A practical application of the cascade equivalence can be best seen

in polyphase decomposition which will be discussed in this section.
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2.7.1 Polyphase decomposition of sinc filter

The transfer function of the sinc filter with 10 taps obtained in (2.26) can be

expanded as

Hs(z) =

(

1 − z10

1 − z−1

)4

(2.39)

=

(

(1 − z−5)(1 + z−5)

1 − z−1

)4

(2.40)

= (1 + z−1 + z−2 + z−3 + z−4)4(1 + z−5)4 (2.41)

= H1(z)(1 + z−5)4 (2.42)

As we have seen, the factor (1 + z−5)4 can be pushed to the low frequency side

of the decimator to give (1 + z−1)4 (Figure 2.19) which is later be combined with

the FIR filter in the second stage of the decimation filter. By moving even a

part of the sinc filter computation to the low frequency side, we can considerably

decrease power consumption. Now the transfer function to be implemented in the

first stage (at 1GHz) is only H1(z). This can be expanded as shown below.

H1(z) = (1 + z−1 + z−2 + z−3 + z−4)4 =

16
∑

n=0

h(n)z−n (2.43)

= 1 + 4z−1 + 10z−2 + 20z−3 + 35z−4 + 52z−5 + 68z−6 + 80z−7 + 85z−8 + 80z−9

+68z−10 + 52z−11 + 35z−12 + 20z−13 + 10z−14 + 4z−15 + z−16 (2.44)

Which can be written as

H1(z) = (1 + 52z−5 + 68z−10 + 4z−15)

+ z−1(4 + 68z−5 + 52z−10 + z−15)

+z−2(10 + 80z−5 + 35z−10)

+z−3(20 + 85z−5 + 20z−10)

+z−4(35 + 80z−5 + 10z−10) (2.45)
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That is

H1(z) = E0(z
5) + z−1E1(z

5) + z−2E2(z
5) + z−3E4(z

5) + z−4E4(z
5) (2.46)

where

E0(z) = (1 + 52z−1 + 68z−2 + 4z−3) (2.47)

E1(z) = (4 + 68z−1 + 52z−2 + z−3) (2.48)

E2(z) = (10 + 80z−1 + 35z−2) (2.49)

E3(z) = (20 + 85z−1 + 20z−2) (2.50)

E4(z) = (35 + 80z−1 + 10z−2) (2.51)

The above decomposition of the sinc filter H1(z) into E0(z) to E4(z) is called

polyphase decomposition (Figure 2.23 and Figure 2.24). Note that all the mul-

tiplications with filter coefficients now need to be carried out only at 200MHz.

This greatly relaxes the timing constraints and lowers the power consumption.

The actual circuit implementation of this architecture is described in detail in the

next chapter.

2.7.2 Polyphase decomposition of the FIR filter

The transfer function of the 64th order FIR filter obtained in Table 2.4 with 10-bit

precision coefficients can be written as

Hf (z) =
k=63
∑

k=0

hkz
−k (2.52)

where hk, k = 0,1..63 are the coefficients. Just like in the case of sinc filter, the

FIR filter can also be split into five filters as shown in (2.53). Figure 2.25 and

Figure 2.26 illustrate the decomposition. Note that this is quite similar to the
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Figure 2.23: Polyphase decomposition of sinc filter
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Figure 2.24: Polyphase decomposition of sinc filter. The filter is split into a deci-
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Table 2.5: Gk(z) definitions

Gk(z) Definition
G0(z) h0 +h5z

−1 +h10z
−2 +h15z

−3 +h20z
−4 +

h25z
−5 + h30z

−6 + h28z
−7 + h23z

−8 +
h18z

−9 + h13z
−10 + h8z

−11 + h3z
−12

G1(z) h1 +h6z
−1 +h11z

−2 +h16z
−3 +h21z

−4 +
h26z

−5 + h31z
−6 + h27z

−7 + h22z
−8 +

h17z
−9 + h12z

−10 + h7z
−11 + h2z

−12

G2(z) h2 +h7z
−1 +h12z

−2 +h17z
−3 +h22z

−4 +
h27z

−5 + h31z
−6 + h26z

−7 + h21z
−8 +

h16z
−9 + h11z

−10 + h6z
−11 + h1z

−12

G3(z) h3 +h8z
−1 +h13z

−2 +h18z
−3 +h23z

−4 +
h28z

−5 + h30z
−6 + h25z

−7 + h20z−8 +
h15z−9 + h10z

−10 + h5z
−11 + h0z

−12

G4(z) h4 +h9z
−1 +h14z

−2 +h19z
−3 +h24z

−4 +
h29z

−5 + h29 + z−6h24z
−7 + h19z

−8 +
h14z

−9 + h9z
−10 + h4z

−11

decomposition done for sinc filter case.

Hf(z) = G0(z
5) + z−1G1(z

5) + z−2G2(z
5) + z−3G4(z

5) + z−4G4(z
5) (2.53)

The forms of Gk(z) are given in Table 2.5. The polyphase decomposition of

the FIR filter Hf(z) into G0(z) to G4(z) facilitates computations to be carried out

in a lower frequency (40MHz) instead of 200MHz (Figure 2.25, Figure 2.26). It is

assumed that the five streams of 14-bit data y(5k) to y(5k + 4) will appear at the

positive edge of a 25 ns clock and will stay available throughout the period.
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CHAPTER 3

Implementation of the Sinc Filter

In the earlier chapter, a two stage design of a decimation filter that meets the

SNR requirement is derived. It is known that the input to the decimation filter

from the ∆Σ modulator is a 4-bit digital signal. This requires all the filtering

and decimation to be done in digital domain, making the entire decimation filter

a digital circuit. Polyphase decomposition is used so that the circuit has to work

only at the decimated rate thereby greatly relaxing the timing constraints. By

decreasing the maximum frequency of operation to 200MHz, the whole digital

circuit can now be implemented using 0.18µm standard cell library.

The challenge hereafter is to implement the decimation filter as efficiently

as possible so that the power consumption and area are minimum. The digital

design is modelled using the Hardware Description Language (HDL), Verilog and

is synthesized and routed using Synopsis Design Vision and Cadence Encounter

respectively. In this chapter, the circuit details of the implementation of the

decimation filter in polyphase architecture are given.

3.1 Implementation of decomposed filters

From the Figure 2.24, it is clear that the sinc filter implementation using polyphase

decomposition involves the design of a decimator with decimation factor 5 and five

FIR filters, E0(z) to E4(z). The design of the decimator is discussed in detail in

a later chapter. For now, assume that the inputs to the five FIR filters, x(5k) to

x(5k +4) are available at the positive edge of a 5 ns clock (200MHz). Also assume

that all these five inputs stay available for one full time period (5 ns).



3.1.1 E0(z) and E1(z)

Recall that the transfer functions of E0(z) and E1(z) are

E0(z) = (1 + 52z−1 + 68z−2 + 4z−3) (3.1)

E1(z) = (4 + 68z−1 + 52z−2 + z−3) (3.2)

From (3.1) and (3.2), it can be seen that the usual symmetry of the FIR filter

coefficients that gives a linear phase response is absent in E0(z) to E4(z). So

it may appear that in polyphase decomposition, the number of multiplications

with filter coefficients doubles, since the symmetry of the coefficients is lost in

each filter. But note that even though each filter has asymmetric coefficients, the

coefficients are symmetric between pairs of two filters. For example, note that the

filter coefficients of E0(z) and E1(z) given in (3.1) and (3.2) are the same and are

mirror images of each other. Making use of this symmetry between filters, two

FIR filters E0(z) and E1(z) can be implemented together as shown in Figure 3.1[2,

p. 433]. The outputs of E0(z) and E1(z) have to be added later.

3.1.2 E2(z) and E4(z)

The z-domain transfer functions of E2(z) and E4(z) are

E2(z) = (10 + 80z−1 + 35z−2) (3.3)

E4(z) = (35 + 80z−1 + 10z−2) (3.4)

Similar to E0(z) and E1(z), the symmetry of filter coefficients between E2(z)

and E4(z) can also be exploited to get an efficient implementation as shown in

Figure 3.2.
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Figure 3.1: The combined circuit implementation of E0(z) and E1(z). The terms
y0 to y3 get multiplied with the filter coefficients to form partial prod-
ucts which have to be added later.
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Figure 3.2: Combined circuit implementation of E2(z) and E4(z). The terms y4 to
y6 get multiplied with the filter coefficients to form the partial products
which have to added later.
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3.1.3 E3(z)

From the transfer function of E3(z) given in (3.5), it can be seen that the filter

E3(z) is symmetric with a linear phase. The direct form implementation of E3(z)

is shown in Figure 3.3.

E3(z) = (20 + 85z−1 + 20z−2) (3.5)

From Figures 3.1, 3.2 and 3.3, it can be seen that inputs x(5k) to x(5k + 4)

are shifted and added using eight standard 4-bit carry look ahead adders (CLA1

to CLA8) taking care to exploit the symmetry of coefficients between and within

filters. The sums y0 to y8 are multiplied with the filter coefficients and should

be added to get the final output of the sinc decimator. Since multiplications are

nothing but additions of partial products, all we need to do is to generate all the

partial products and add them up.

E3(z)
x(5k+1)

20 + 85z-1 +20z-2

z-1 z-1

4

4

4

5

x(5k+1)

x(5k+1)

85

20

4

y7

y8

To be added
CLA8

(a) (b)

(c)

Figure 3.3: Circuit implementation of E3(z). The terms y7 and y8 get multiplied
with the filter coefficients to form the partial products which have to
be added later.
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3.2 Partial product generation

In the previous section, it is seen that to get the final output from the sinc filter,

nine multiplications of the eight 5-bit numbers y0 to y7 and one 4-bit number

y8 with different filter coefficients need to be done and all the products have to

be added. Performing multiplication with each sinc filter coefficient separately

and adding the products at the end may not be the best way since some of the

multiplications can take longer time than the other. Faster multiplications finish

sooner and stay idle till the more time consuming multiplications get over.

Since the whole sinc filter has to work at a speed of 200MHz which gives a

critical path delay (CPD) of 5 ns, we may not be able to afford the simple design

where nine multiplications with y0 to y8 are carried out individually and addition

of products is done at the end. Thus all the partial products of multiplication are

generated at the beginning itself to add it together in a wallace tree formation[8],

[9], [10].

All sinc filter coefficients are integers and hence each of them can be written as

a sum of powers of 2 as shown in Table 3.1. In binary representation, a multipli-

cation by two is simply padding a zero to the LSB or equivalently left shifting by

one. Thus all the partial products essentially are the zero-padded (or left shifted)

versions of y0, y1 . . . y8. The twenty partial products generated by the multiplica-

tion of the shifted and added inputs y0 to y8 with sinc filter coefficients are given

in Table 3.1. The sum of these partial products form the final output of the sinc

filter.

3.3 Wallace tree addition

We cannot hope to meet the timing constraint if we use conventional n-bit adders

to add up the twenty partial products pp1 to pp20. A suitable method to add up

a large number of vectors is to use the Wallace tree structure[9].
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Table 3.1: Partial products of the sinc filter to be added. y0 to y7 are the 5-bit
outputs of the eight CLAs. y8 is a 4-bit number.

Shifted and Sinc filter coefficient
added inputs to which yk is to be Partial products
yk multiplied
y0 4 = 22 pp1 = 22y0

y1 52 = 25 + 24 + 22 pp2 = 25y1,
pp3 = 24y1,
pp4 = 22y1

y2 68 = 26 + 22 pp5 = 26y2,
pp6 = 22y2

y3 1 = 20 pp7 = y3

y4 35 = 25 + 2 + 1 pp8 = 25y4,
pp9 = 2y4,
pp10 = y4

y5 80 = 26 + 24 pp11 = 26y5,
pp12 = 24y5

y6 10 = 23 + 2 pp13 = 23y6,
pp14 = 2y6

y7 20 = 24 + 22 pp15 = 24y7,
pp16 = 22y7

y8 85 = 26 + 24 + 22 + 1 pp17 = 26y8,
pp18 = 24y8,
pp19 = 22y8,
pp20 = y8
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Figure 3.4: Circuit implementation of an n-bit wallace adder. Three input vectors
ā, b̄ and c̄ can be added in 1 full adder delay to get a sum and carry
vector.
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An n-bit Wallace adder is simply an array of n full adders as shown in Fig-

ure 3.4. In Figure 3.4, ā, b̄ and c̄ are three n-bit numbers (partial products) to be

added. By giving the kth bit of ā, b̄ and c̄ to the kth full adder, we can generate

an array of sums and carrys each of length n, denoted by sum and carry. The

actual sum of the three input vectors

ā + b̄ + c̄ = 2carry + sum (3.6)

Note that carry is to be shifted by one bit before adding to sum to get the final

sum thus making the maximum length of the final vector n+2.

Thus a wallace adder can be used to add three n-bit vectors to generate a

sum vector and carry vector. Like a ripple carry adder (RCA), wallace adder also

decreases the number of addends by one. The difference is that if a wallace adder

takes only one full adder delay (irrespective of n) to reduce three addends to two,

a RCA needs a delay proportional to n to reduce two addends to one final sum

vector. This is illustrated in Figure 3.5.

a ab bc c

n n n n n n

n n nn+1

n-bit adder

Wallace Adder n-bit adder

csumsumcarry

3 partial products3 partial products

2 output vectors 2 output vectors

1 full adder
 delay delay

Figure 3.5: Comparison of wallace adder with an n-bit RCA in adding up partial
products.
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3.3.1 Reduction of the number of partial products

From Table 3.1, it is seen that there are 20 partial products to be added (pp1 to

pp20) to form the final sinc filter output. A careful observation of these partial

products helps us to reduce their number. This is possible because certain ad-

ditions of partial products can be done without actually using any adders. For

0 0 0 0 y8

4 bits

pp18 = 24 y8 =  

pp20 = 20 y8 =  y8

y8y8

Combined partial
product (8 bits) = ppr5

pp18 + pp20  =  

Figure 3.6: Reduction of partial products with no hardware. Partial products
pp18 = 24y8 and pp20 = y8 are added by simply placing y8 in the last
four bit positions of 24y8.

example, consider the partial products pp18 and pp20. pp18 = 24y8 which means

the least significant four bits of pp18 are 0. pp20 = y8 on the other hand is simply

a 4-bit number. Addition of pp18 and pp20 is simply placing the four bits of pp20 in

the least significant four bits of pp18. Clearly this does not require any hardware,

but only appropriate wiring as shown in Figure 3.6.

This grouping of partial products that can be added without any hardware

results in a lower number of vectors to be added. This in turn results in a less

complex wallace tree (lesser number of stages in the tree) and better performance.

Similarly pp17 and pp19 can be combined. Also pp11 and pp14, pp8 and pp10, pp5

and pp9, pp2 and pp7 form combined partial products. As shown in Figure 3.7,

now we have only fourteen partial products to be added in the tree instead of the

earlier twenty and this can be done in just 6 stages of wallace adders. The number

of partial products can be reduced from fourteen to two in six full adder delays.
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ppr2=pp17+pp19

ppr3=pp5+pp9

ppr4=pp11+pp14

ppr5=pp18+pp20

10

10

11

11

8

Reduction
of the number

of partial 
products 

ppr1=pp8+pp10

pp5

pp8

pp9

pp10

pp11

pp17

pp18

pp19

pp14

pp20

(Zero power)

Figure 3.7: Ten out of twenty original partial products are reduced to five reduced
partial products ppr1 to ppr5 by simple rewiring.

The complete wallace tree[9], [10] implementing this is shown in Figure 3.8.

3.3.2 Minimizing the number of adders

Apart from minimizing the number of partial products, we can further reduce the

number of adders required in the wallace tree by appropriate grouping of similar

partial products. To get the final output, it is only required to add all the partial

products somehow. There is no rule stipulating which partial product has to be

added with which one and in what stage of the wallace tree.

Consider the 7-bit partial products pp1 and pp4. It can be added with any of

the twelve other partial products (after reduction). If we choose to add pp1 and

pp4 with, say the 10-bit reduced partial product ppr1, we need a 10-bit wallace

adder. Instead if we choose to add pp1 and pp4 with another 7-bit partial product

with similar zero-padding, say pp6, only a five bit wallace adder is required as

shown in Figure 3.9. Similarly we can group pp3, pp12 and pp15 etc to reduce the

number of adders. The same technique can be continued in the later stages of
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pp15

pp16

pp13
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Figure 3.8: Six stage wallace tree addition of nine original partial products and the five reduced partial products. Note the one bit
left shift performed at the carry output of each wallace adder.
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wallace tree by identifying partial products with identical zero paddings.

5 bits

pp1 = 22 y0 =  

pp4 = 22 y1 =  

pp6 = 22 y2 = 0 0 

0 0 

0 0 y0

y1

y2

0 0 

0 0 
and Carry
vectors

5-bit Sum

5-bit 
wallace  
addition 

Figure 3.9: Careful grouping of partial products can decrease the number of adders

3.4 Vector Merging Adder (VMA)

In Figure 3.8, it is found that the wallace addition in its final stage gives two

vectors: a 14-bit carry and a 13-bit sum. In order to get the final output from

the sinc filter, it is necessary to add up these two vectors. Since carry look ahead

addition is not usually practical for adding vectors of length more than four bits,

to build fast adders, logarithmic look ahead adders are used[11, p.579]. Thus the

final Vector Merging Adder (VMA) in the sinc filter circuit is implemented using

a Kogge-Stone logarithmic look ahead adder[12], the concept and details of which

are explained in this section.

Kogge-Stone adder works by decomposing the the process of carry propagation

in a carry look ahead adder into subgroups. The final output carry of an N-bit

adder is generated in O(log2 N) time and hence the name logarithmic adder. The

working of Kogge-Stone adder can be split into three operations:

1. Creation of generate and propagate signals

2. Dot operation

3. Generation of sum

50



3.4.1 Generate and Propagate signals

Assume that the 14-bit numbers to be added are A0:13 and B0:13. The definitions

of generate G and propagate P given in (3.7) and (3.8) are the same as that of a

standard carry look ahead adder. See Figure 3.10(a).

Gk = AkBk (3.7)

Pk = Ak ⊕ Bk (3.8)

where k = 0, 1, . . . 13 for a 14-bit adder. The carry dependencies in a carry look

ahead topology for the first four bits for an initial input carry Ci are given below.

Ck is the kth output carry.

C0 = G0 + P0Ci (3.9)

C1 = G1 + P1G0 + P1P0Ci (3.10)

C2 = G2 + P2G1 + P2P1G0 + P2P1P0Ci (3.11)

C3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0Ci (3.12)

3.4.2 Dot operation

A dot operation is defined as[11, p. 580]

(G, P ).(G′, P ′) = (G + PG′, PP ′) (3.13)

This applied to a particular case is

(G1, P1).(G0, P0) = (G1 + P1G0, P1P0) (3.14)
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Keeping this definition in mind, the boolean expressions for carrys in a CLA given

in (3.9) to (3.12) can be written as

C0 = G0 + P0Ci (3.15)

C1 = (G1 + P1G0) + (P1P0)Ci

= G1:0 + P1:0Ci (3.16)

C2 = G2 + P2(G1 + P1G0 + P1P0Ci)

= G2 + P2C1 (3.17)

C3 = (G3 + P3G2) + (P3P2)(G1 + P1G0 + P1P0Ci)

= G3:2 + P3:2C1 (3.18)

where (G3:2, P3:2) = (G3, P3).(G2, P2). G3:2 is one only when a carry is generated

at bit position 3 or is generated at 2 and is propgated. P3:2 is one only when a

carry propagates through both bit positions 2 and 3. Similarly for (G1:0, P1:0) =

(G1, P1).(G0, P0). The pictorial representation of the dot operation is given in

Figure 3.10(b).

Associative property of dot operation

Simple boolean analysis will show that the dot operation is not commutative but

is associative[11, p. 580]. A result of the associative property is given in (3.19)

and is illustrated in Figure 3.19.

(G3:2P3:2).(G1:0P1:0) =
[

(G3, P3).(G2, P2)
]

.
[

(G1, P1).(G0, P0)
]

=
[

G3 + P3G2, P3P2

]

.
[

G1 + P1G0, P1P0

]

=
[

G3 + P3G2 + P3P2(G1 + P1G0), P3P2P1P0

]

=
[

G3:0, P3:0

]

(3.19)

From (3.19) and (3.12), we get the fourth carry, C3 = G3:0 + P3:0Ci.

52



(Ak,Bk)

Gk=AkBk

Pk=Ak Bk

(Pk,Ck-1)

Sk=Pk Ck-1

Ak Bk Ak Bk

Gk Pk

Pk Ck-1

Sk

(G,P) (G’,P’)

(G+PG’,PP’)

P P’

PP’G+PG’

P G’G

(a) Generate and Propagate signals

(c) Sum generation

(b) Dot operation

Figure 3.10: The basic operations involved in Kogge-Stone adder. Creation of
Pand G signals for each input bit, dot operation and final sum gen-
eration.

(A0,B0)(A1,B1)(A2,B2)

(G0,P0)

(G1:0,P1:0)

(A3,B3)

(G1,P1)(G2,P2)(G3,P3)

(G3:2,P3:2)

(G3:0,P3:0)

Figure 3.11: Associative property of dot operation.
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3.4.3 Sum Generation

Once all the carrys are generated in a Kogge-Stone tree, the final sum has to be

generated. For this, the sum generation blocks in the Figure 3.10(c) are used. For

k = 1, 2 . . . 13, kth bit of the sum Sk, is given by

Sk = Pk ⊕ Ck−1 (3.20)

(3.21)

S0 is given by P0⊕Ci. Since Ci = 0 in our case, S0 is just equal to P0. The complete

schematic diagram of the 14-bit Kogge-Stone adder is shown in Figure 3.12.

3.4.4 14-bit Kogge-Stone adder

(A
0,

B
0)

(A
1,

B
1)
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B
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(A
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B
3)

(A
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4)

(A
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B
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(A
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(A
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B
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B
9)

(A
10

,B
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)

(A
11

,B
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)

(A
12

,B
12

)

(A
13

,B
13

)

s0s1s2s3s4s5s6s7s8s9s10s11s12s13

Figure 3.12: Schematic of 14-bit Kogge-Stone logarithmic look ahead adder. The
path that generates the fourteenth carry C13 is highlighted.
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3.5 The complete sinc filter

The complete sinc filter implementation is shown in Figure 3.13. The output

from the wallace tree, sum and carry is added together using the vector merging

Kogge-Stone adder. We have considered all the components of sinc filter except

the intial block that splits the input data at 1GHz into five streams. The design

of this decimator and clock divider will be discussed in Chapter 5.
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4
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1 GHz

Partial
product
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Partial
product
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(CLA1 ) 

(to CLA8) 

Figure 3.13: Complete sinc filter schematic. CLA: Carry Lookahead Adder, VMA: Vector Merging Adder.

56



CHAPTER 4

FIR Filter Implementation

In the earlier chapters, we have seen that it is beneficial to implement the decima-

tion filter in two stages: A sinc filter in first stage and an FIR filter in the second.

We have also seen that the polyphase decomposition of the sinc filter has taken

the whole operation of the circuit to a lower rate which apart from relaxing the

timing constraints, lowers power consumption too. For the same reasons, we use

polyphase decomposition for implementing the second stage FIR filter also. The

decomposition of the FIR filter to five filters G0(z) to G4(z) is discussed in section

2.7.2.

The finite precision FIR filter coefficients are obtained in Table 2.4. The input

to the FIR filter is the 14-bit output of the sinc filter. Unlike sinc filter, the

coefficients can be either positive or negative for the FIR filter. So the partial

products can also be positive or negative. Each filter coefficient gets multiplied

by the shifted and summed input signals in a direct form FIR implementation.

Considering that multiplication is just addition of partial products, a rough idea

about the complexity of the circuit can be obtained by counting the number of

partial products. Table 4.1 lists the filter coefficients, their expansion and the

number of partial products each coefficient will yield.

4.1 Implementation of decomposed filters

From the Figure 2.25 and Figure 2.26, we know that the FIR filter implementation

using polyphase decomposition involves the design of a decimator with decimation

factor 5 and five FIR filters, G0(z) to G4(z). The design of the decimator is

discussed in detail in chapter 5. For now, assume that the inputs to the five FIR



Table 4.1: Filter coefficients and partial products

hk Expansion Number of
partial products

h0 = 1 1 1
h1 = 6 (22 + 2) 2
h2 = 13 (23 + 22 + 1) 3
h3 = 18 (24 + 2) 2
h4 = 17 (24 + 1) 2
h5 = 8 (23) 1
h6 = −9 −(23 + 1) 2
h7 = −31 −(24 + 23 + 22 + 2 + 1) 5
h8 = −52 −(25 + 24 + 22) 3
h9 = −64 −(26) 1
h10 = −61 −(25 + 24 + 23 + 22 + 1) 5
h11 = −40 −(25 + 23) 2
h12 = −7 −(22 + 2 + 1) 3
h13 = 28 (24 + 23 + 22) 3
h14 = 51 (25 + 24 + 2 + 1) 4
h15 = 52 (25 + 24 + 22) 3
h16 = 26 (24 + 23 + 2) 3
h17 = −20 −(24 + 22) 2
h18 = −69 −(26 + 22 + 1) 3
h19 = −100 −(26 + 25 + 22) 3
h20 = −94 −(26 + 24 + 23 + 22 + 2) 5
h21 = −46 −(25 + 23 + 22 + 2) 4
h22 = 36 (25 + 22) 2
h23 = 124 (26 + 25 + 24 + 23 + 22) 5
h24 = 180 (27 + 25 + 24 + 22) 4
h25 = 168 (27 + 25 + 23) 3
h26 = 64 (26) 1
h27 = −132 −(27 + 24) 2
h28 = −392 −(28 + 27 + 23) 3
h29 = −666 −(29 + 27 + 24 + 23 + 2) 5
h30 = −894 −(29+28+26+25+24+23+22+2) 8
h31 = −1024 −210 1

Total = 96
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filters, y(5k) to y(5k+4) are available at the positive edge of a 25 ns clock (40MHz).

Also assume that all these five inputs stay available for one full time period (25 ns).

4.1.1 Implementation of G4(z)

The definition of G4(z) is

G4(z) = h4 + h9z
−1 + h19z

−2 + h24z
−3 + h29z

−4 + h29z
−5

+h24z
−6 + h19z

−7 + h14z
−8 + h9z

−9 + h4z
−10 (4.1)

Note that the filter G4(z) is symmetric and the direct form implementation of

this FIR filter is shown in Figure 4.1. The input y(5k) is shifted and added to

generate 15-bit multiplicands a0 to a5. The 14-bit addition of the shifted inputs

can be performed by simple ripple carry adders(RCAs) unlike in a sinc filter where

carry look ahead adders(CLAs) are used. This is because the timing constraint is

much more relaxed (by a factor of 5 to be precise) for the FIR filter making the

use of simpler and less bulky adders feasible.

Table (4.2) shows all the negative and positive partial products obtained by the

multiplication of filter coefficients, h4, h9, h14, h19, h24 and h29 with 15-bit numbers

a0 to a5 respectively. kth positive and negative partial products are denoted pp+
k

and pp−k respectively. From Table 4.2, it can be seen that G4(z) generates 10

positive partial products (pp+
1 to pp+

10) and 9 negative partial products (pp−

1 to

pp−9 ).
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z-1 z-1 z-1

z-1 z-1

z-1

h4 h9 h14 h19 h24 h29

a0 a1 a2 a3 a4 a5

A0 A1 A2 A3 A4 A5

15 15 15 15 15 15

14

To be added

y(5k)

Clocked at
40MHz

z-1 z-1

z-1z-1z-1

Figure 4.1: Circuit implementation of G4(z). The shifted and added input terms
a0 to a5 get multiplied with the filter coefficients to form partial prod-
ucts A0 to A5.

Table 4.2: Filter coefficients of G4(z) and partial products

Ak ak × h Positive and negative
partial products

A0 a0 × h4 = 17a0 pp+
1 = 24a0,

pp+
2 = a0

A1 a1 × h9 = −64a1 pp−1 = 24a1

A2 a2 × h14 = 51a2 pp+
3 = 25a2,

pp+
4 = 24a2,

pp+
5 = 2a2,

pp+
6 = a2

A3 a3 × h19 = −100a3 pp−2 = 26a3,
pp−3 = 25a3,
pp−4 = 23a3

A4 a4 × h24 = 180a4 pp+
7 = 27a4,

pp+
8 = 25a4,

pp+
9 = 24a4,

pp+
10 = 22a4

A5 a5 × h29 = −666a5 pp−5 = 29a5,
pp−6 = 27a5,
pp−7 = 24a5,
pp−8 = 23a5,
pp−9 = 2a5
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4.1.2 Implementation of G0(z) and G3(z)

The definitions of G0(z) and G3(z) are

G3(z) = h3 + h8z
−1 + h13z

−2 + h18z
−3 + h23z

−4 + h28z
−5 + h30z

−6 (4.2)

+h25z
−7 + h20z−8 + h15z−9 + h10z

−10 + h5z
−11 + h0z

−12

G0(z) = h0 + h5z
−1 + h10z

−2 + h15z
−3 + h20z

−4 + h25z
−5 + h30z

−6 (4.3)

+h28z
−7 + h23z

−8 + h18z
−9 + h13z

−10 + h8z
−11 + h3z

−12

The symmetry of the filter coefficients between the filters is exploited to get

the FIR filter implementation as shown in Figure 4.2. The 14-bit inputs y(5k +1)

and y(5k + 4) are shifted and added to generate 15-bit multiplicands b0 to b12.

The 14-bit additions of the shifted inputs are performed by simple ripple carry

adders(RCAs).

Table 4.3 shows all the negative and positive partial products obtained by the

multiplication of filter coefficients of G0(z) and G3(z) with 15-bit numbers b0 to

b12 respectively. From Table 4.3, it can be seen that G0(z) and G3(z) generates

18 positive partial products (pp+
11 to pp+

28) and 27 negative partial products (pp−

10

to pp−36).

4.1.3 Implementation of G1(z) and G2(z)

The definitions of G1(z) and G2(z) are

G1(z) = h1 + h6z
−1 + h11z

−2 + h16z
−3 + h21z

−4 + h26z
−5 + h31z

−6 (4.4)

+h27z
−7 + h22z

−8 + h17z
−9 + h12z

−10 + h7z
−11 + h2z

−12

G2(z) = h2 + h7z
−1 + h12z

−2 + h17z
−3 + h22z

−4 + h27z
−5 + h31z

−6 (4.5)

+h26z
−7 + h21z

−8 + h16z
−9 + h11z

−10 + h6z
−11 + h1z

−12

Again, by exploiting the symmetry of coefficients between the filters, the im-
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plementation is shown in Figure 4.3. The inputs y(5k+2) and y(5k+1) are shifted

and added to generate 15-bit multiplicands c0 to c12. The 14-bit additions of the

shifted inputs are performed by ripple carry adders(RCAs).

Table 4.4 shows all the negative and positive partial products obtained by the

multiplication of filter coefficients of G1(z) and G2(z) with 15-bit numbers c0 to c12

respectively. From Table 4.4, it can also be seen that G1(z) and G2(z) generates

11 positive partial products (pp+
29 to pp+

39) and 21 negative partial products (pp−

37

to pp−57).
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Figure 4.2: Circuit implementation of G0(z) and G3(z). The terms b0 to b12 gets multiplied with the filter coefficients to form the
partial products B0 to B12.
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Table 4.3: Filter coefficients of G3(z), G0(z) and partial products

Bk bk × h Positive and negative
partial products

B0 b0 × h0 = b0 pp+
11 = b0,

B1 b1 × h5 = 8b1 pp+
12 = 23b1,

B2 b2 × h10 = −61b2 pp−10 = 25b2,
pp−11 = 24b2

pp−12 = 23b2

pp−13 = 23b2

pp−14 = b2

B3 b3 × h15 = 52b3 pp+
13 = 25b3,

pp+
14 = 24b3

pp+
15 = 22b3

B4 b4 × h20 = −94b4 pp−15 = 26b4,
pp−16 = 24b4

pp−17 = 23b4

pp−18 = 22b4

pp−19 = 2b4

B5 b5 × h25 = 168b5 pp+
16 = 27b5,

pp+
17 = 25b5

pp+
18 = 23b5

B6 b6 × h30 = −894b6 pp−20 = 29b6,
pp−21 = 28b6

pp−22 = 26b6

pp−23 = 25b6

pp−24 = 24b6

pp−25 = 23b6

pp−26 = 22b6

pp−27 = 2b6

B7 b7 × h28 = −392b7 pp−28 = 28b7,
pp−29 = 27b7

pp−30 = 23b7

B8 b8 × h23 = 124b8 pp+
19 = 26b8,

pp+
20 = 25b8

pp+
21 = 24b8

pp+
22 = 23b8

pp+
23 = 22b8

B9 b9 × h18 = −69b9 pp−31 = 26b9,
pp−32 = 22b9

pp−33 = b9

B10 b10 × h13 = 28b10 pp+
24 = 24b10,

pp+
25 = 23b10

pp+
26 = 22b10

B11 b11 × h8 = −52b11 pp−34 = 25b11,
pp−35 = 24b11

pp−36 = 22b11

B12 b12 × h3 = 18b12 pp+
27 = 24b12,

pp+
28 = 22b12

64



C11

15

c1c2c3c4c5c6c7c8c9c12

h7

C10

15

h12

C9

15

h17

C8

15

h22

C7

15

h27

C6

15

h31

C5

15

C4

15

h16

C3

15

h11

C2

15

h6

C1

15

h1

C0

15

y(5k+2)

y(5k+3)

c10c11

h2

C12

15

c0

h21h26

To be added

Clocked at 40 MHz

z-1 z-1 z-1 z-1 z-1

z-1z-1z-1z-1z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1

z-1 z-1 z-1 z-1 z-1 z-1 z-1

Figure 4.3: Circuit implementation of G1(z) and G2(z). The terms c0 to c12 gets multiplied with the filter coefficients to form the
partial products C0 to C12
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Table 4.4: Filter coefficients of G2(z),G1(z) and partial products

C0 c0 × h1 = 6c0 pp+
29 = 22c0,

pp+
30 = 2c0

C1 c1 × h6 = −9c1 pp−37 = 23c1,
pp−38 = c1

C2 c2 × h11 = −40c2 pp−39 = 25c2,
pp−40 = 23c2

C3 c3 × h16 = 26c3 pp+
31 = 24c3,

pp+
32 = 23c3

pp+
33 = 2c3

C4 c4 × h21 = −46c4 pp−41 = 25c4,
pp−42 = 23c4

pp−43 = 22c4

pp−44 = 2c4

C5 c5 × h26 = 64c5 pp+
34 = 26c5,

C6 c6 × h31 = −1024c6 pp−45 = 210c6,
C7 c7 × h27 = −132c7 pp−46 = 27c7,

pp−47 = 22c7

C8 c8 × h22 = 36c8 pp+
35 = 25c8,

pp+
36 = 22c8

C9 c9 × h17 = −20c9 pp−48 = 24c9,
pp−49 = 22c9

C10 c10 × h12 = −7c10 pp−50 = 22c10,
pp−51 = 2c10

pp−52 = c10

C11 c11 × h7 = −31c11 pp−53 = 24c11,
pp−54 = 23c11

pp−55 = 22c11

pp−56 = 2c11

pp−57 = c11

C12 c12 × h2 = 13c12 pp+
37 = 23c12,

pp+
38 = 23c12

pp+
39 = c12
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4.1.4 Optimizing the wallace tree

So far, we have seen that to implement the FIR filter, we should implement the

five sub-filters. The implemention of these five filters boils down to adding the

partial products pp+
1 to pp+

39 and pp−1 to pp−57. This addition can be performed in

a wallace adder tree similar to that of sinc filter.

Before we blindly add up the partial products, it is a good idea to carefully

observe the nature of partial products. As we have seen in the case of sinc filters,

by grouping together suitable partial products we can perform some additions

without any hardware at all. Also, as in the case of sinc filter, by grouping the

partial products with similar zero-padding, the number of adders in the wallace

tree can be minimized.

As shown in Figure 4.4, consider the partial products emerging from the mul-

tiplication of a4 with h19 = 180.

A4 = a4 × h24 = 180a4 (4.6)

= a4 × (27 + 25 + 24 + 22) (4.7)

Thus calculation of A4 appears to require three additions with atleast two stages.

Instead, A4 can also be written as

A4 = (a42
2 + a4)2

5 + (a42
2 + a4)2

2 (4.8)

This splitting requires just two adders, one 15-bit adder that gives (a42
2 +a4) and

one 17-bit adder which gives the final result A4.

4.2 The complete FIR filter

Unlike in the sinc filter, where all partial products are positive (because all filter

coefficients of sinc filter are positive and the 4-bit input from the ∆Σ is DC off-
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Figure 4.4: Addition of partial products using minimum number of adders
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set and scaled to be positive), in the case of FIR filter, there are negative filter

coefficients too. This makes the partial products negative eventhough the 14-bit

input to the FIR filter is an unsigned positive integer. To make matters simple, we

follow the following strategy. Group all the positive partial products and negative

partial products separately. Treat them as positive numbers and add up to get

two sums. Then finally subtract the sum of negative partial products from that

of positive partial products. Refer Figure 4.5.

Note that the for the final subtraction, the sum of postive partial products has

to be added to the 2’s complement of the sum of negative partial products. This

is done by inverting the sum and carry vector from the negative partial product

wallace tree and also by giving a Cin value one.
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Figure 4.5: Addition of partial products in FIR filter
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CHAPTER 5

Decimators and Clock Dividers

5.1 Decimator design

Throughout our discussion, we have assumed that the five parallel streams of data

x(5k) to x(5k+1) or y(5k) to y(5k+1) are available at the positive edge of a clock

and remains available for one time period which is 5 ns and 25 ns respectively for

the sinc and FIR filter. In this chapter, we discuss this decimating process where

a single input stream at a particular rate is split into five streams.

5.1.1 Basic decimator circuit

If we have a clock divider that gives one pulse of clk5 for every five pulses of clk1,

then the basic structure of a decimator is quite simple as shown in Figure 5.1. For

the case of the sinc filter, in Figure 5.1 the clk1 is a 1GHz or 1 ns clock and clk5

is 200MHz or 5 ns clock. Thus input is shifted through a chain of registers by 1 ns

clock and once in every 5 ns, clk5 registers the shifted values x[n] to x[n − 4] to

x[5k + 4] to x[5k].

Thus five consecutive inputs are provided to the five sub-filters E0(z) to E4(z)

of the sinc filter in 5 ns. The same basic circuit will hold for FIR filter as well

except that clk1 becomes 200MHz (5 ns) and clk5 becomes 40MHz (25 ns).

5.1.2 Low power decimator circuit

In the basic decimating structure, we can see that for the sinc filter, we need

at least four 4-bit registers working at 1GHz and five 4-bit registers working at



clk5

reg_0

clk5

reg_0

clk5

reg_0

clk5

reg_0

clk5

reg_0

x[n]

4

4

4

4

4

clk1

clk1

clk1

clk1

4

x[n]

x[n-1]

x[n-2]

x[n-3]

x[n-4] x[5k]

x[5k+1]

x[5k+2]

x[5k+3]

x[5k+4]

clk1

clk5

x[5k] to

x[5k+4]

1 ns

5 ns

(a) (b)

(1 GHz)

(200 MHz)

Figure 5.1: (a)Basic decimator structure. (b)The timing diagram. The clocks correspond to the decimator for the sinc filter. For
the FIR filter, structure is same except that clk1 becomes 200MHz and clk5 becomes 40MHz.
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200MHz. Consider the dynamic power metric CV 2
ddf , where C is the capacitance,

Vdd the supply voltage and f the switching frequency. Assuming a single bit

register causes 1 unit of C, the power metric for the basic circuit

P1 =
(

(4 × 4)CV 2
dd

)

× 1 GHz +
(

(5 × 4)CV 2
dd

)

× 0.2 GHz

= 20CV 2
dd × 109 units (5.1)

Now consider a second circuit shown in Figure 5.2(a). Here five phase shifted

clocks are used to choose the five consecutive inputs. At the end of five cycles,

a common clock registers the five streams together. Detailed timing diagram is

shown in Figure 5.2(b). It can be seen that a particular input is ready at least

0.5 ns (with the negative edge of the master clock, clk1) before the corresponding

phase shifted clock registers it with a positive clock edge.

In this decimator, there are five 4-bit registers reg a to reg e working with the

phase shifted 5 ns clocks and five 4-bit registers reg 0 to reg 4 clocked at 5 ns clock.

Altogether we have 40 registers working at 200MHz. This makes the power metric

P2 = 40CV 2
dd × 0.2 GHz

= 8CV 2
dd × 109 units (5.2)

Comparing P1 and P2, note that the power consumption can be reduced 2.5 times

using the second circuit with the use of phase shifted clocks. Same argument holds

for the second stage decimator before the FIR filter.

5.2 Clock dividers

For both the decimator circuits in the previous section, we assumed a master clock

clk1 and a divided-by-5 clock clk5. For the power efficient design of the decimator,
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Figure 5.2: (a)Low power decimator structure (b)Timing diagram of the power efficient decimator. clk1 has time period 1 ns and
clk5a to clk5e are five phase shifted clocks with time period 5 ns. For the FIR filter decimator, the timing diagram is
same except that clk1 is at 200MHz and clk5a to clk5e are at 40MHz.
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we assumed five phase shifted clocks. In this section we discuss the generation of

these phase shifted clocks from the master clock. All the discussions are done for

the stage 1 clock divider which derives 5 ns clock from 1ns clock. Same principles

apply for the stage 2 clock divider which generates 25 ns clock from 5ns clock.

Due to the stricter timing constraints, clock divider in the first stage is more

challenging.

5.2.1 Counter as a state machine

To divide a clock by 5, the simplest technique is to use a counting state machine

that counts from 0 to 4 and then repeats. This creates five states each of which

gives rise to the five phase shifted clocks required for the decimator. This is a

simple method and requires only three registers working at 1GHz. Bu the com-

binational delay between two state transitions is about 3 gate delays and thus it

cannot be synthesized using standard cell libraries.

Using trial and error, it has been found that to synthesize a sequential circuit at

1GHz, the combinational delay in the feedback loop must be less than or equal to

two gate delays. So alternative methods for clock generation like Ring counter and

Johnson counter are considered even though these counters require more registers

working at 1GHz (Hence more power).

5.2.2 Ring counter and Johnson’s counter

In a Ring counter (Figure 5.3), the reset signal sets the state to 10000 and the

locked ’1’ shifts between the registers creating five states for five phase shifted

clocks.

In a Johnson counter (Figure 5.4), reset brings the state to 00000 and as the

clock ticks, it passes through ten states, which can be used to generate five phase

shifted clocks by coupling states that are five clock cycles apart.
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Note that in both Ring and Johnson counter, there are five 1-bit registers

working at 1GHz and the combinational loop delay ≤ 2 gate delays. Thus any

one of these two can be used to divide the clocks. For simplicity, a Ring counter

is used in our design.
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CHAPTER 6

Decimation Filter with Minimal Passband Droop

So far we have discussed the design and circuit implementation of a two stage

decimation filter with a fourth order 10-tap sinc filter in the first stage and a 60th

order FIR filter in the second stage. In Chapter 2, it is seen that the passband

droop of the 10-tap sinc filter is as high as 2.4 dB. Despite this fairly high droop,

a 10-tap filter was chosen instead of a 5-tap one in order to reduce the complexity

of the second stage FIR filter. Also, recall that the simulated SNR for a 17.5MHz

input signal was meeting the output SNR requirement of 93 dB.

However, for the purpose of completeness, the case of 5-tap sinc filter followed

by an FIR filter should also be considered. This is useful where a passband droop

of 2.4 dB is not desirable.

6.1 Five tap fourth order sinc filter

Recall that a general sinc filter is given by

Hs(z) =

(

1

rM

(

1 − z−rM

1 − z−1

)

)K

(6.1)

For a five tap filter, the value of r is one. The values of K and M remains un-

changed (4 and 5 respectively). i.e.

Hs(z) =

(

1

5

(

1 − z−5

1 − z−1

)

)4

(6.2)

The passband droop and the worst case alias rejection of this filter is shown in

Figure 6.1. The implementation of this filter using polyphase decomposition is
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Figure 6.1: Maximum passband droop and worst case alias rejection for sinc filter
with r = 1, K = 4, M = 5.

discussed in detail in Chapter 3 (Since the factor (1 + z−5)4 was pushed to the

low frequency side, the filter discussed in Chapter 3 is a five tap fourth order sinc

filter).

6.2 FIR filter for the second stage

From Figure 2.18, it is clear that a 10-tap sinc filter has a much sharper response.

Thus if we choose a 5-tap sinc filter, the stopband attenuation of the FIR filter in

the second stage must be much higher to get the same SNR. If we simply use a

5-tap sinc filter in cascade with the 60th order FIR filter Hpc(z) derived in Chapter

2, the output SNR will be only 84 dB. Thus we need a higher order FIR filter in

second stage with a higher stopband attenuation if we were to use 5-tap sinc filter

in first stage. As shown in Table 6.1, all the parameters of the FIR filter are kept

the same as the earlier except stopband attenuation. With the higher stopband

attenuation of 64 dB, the order of the new filter Ĥpc(z) is 74.
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Table 6.1: Parameters for the FIR filter Ĥpc(z)

Passband ripple, δp < 1 dB
Stopband attenuation, δs 64 dB
Passband edge, fp 18.25MHz
Stopband edge, fs 24MHz
Sampling frequency, fs 200MHz

The frequency response of the 74th order FIR filter is shown in Figure 6.2. The

frequency responses of the 5-tap sinc filter and the FIR filter Ĥpc(z) are shown

together in Figure 6.3.
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Figure 6.2: Normalized frequency response of the 74th order FIR filter Ĥpc(z).
Note that the attenuation is around 64 dB, much higher compared to
that of Hpc(z) obtained in Chapter 2.
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Figure 6.3: Frequency response of the 74th order FIR filter Ĥpc(z) and the 4th

order 5-tap sinc filter super imposed. Note that half the sampling rate
is 100MHz and 500MHz for FIR and sinc respectively.

6.2.1 Finite precision of the FIR filter coefficients

The FIR filter Ĥpc(z) can be written as

Ĥpc(z) =

k=73
∑

k=0

hkz
−k (6.3)

The coefficients hk can be scaled just as in the earlier case of Hpc(z). It is

found that the minimum number of bits required for the largest coefficient is 13

to still obtain the required SNR.

h′′

k = hk ×
213

0.1984
(6.4)

= hk × 41290.93 (6.5)

This new scaled coefficients h′′

k are rounded to the nearest integer. The final
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values of the filter coefficients are given in Table 6.2.

Table 6.2: Finite precision FIR filter coefficients. Only 37 filter coefficients are
shown because of the symmetry hk = h73−k, k = 0, 1, . . . 73

hk(z) Value of hk h′′

k = hk× round(h′′

k)
h0 0.000952031066569 39.3102 39
h1 0.001546729111274 63.8659 64
h2 0.002163482919353 89.3322 89
h3 0.002224222544432 91.8402 92
h4 0.001302324163622 53.7742 54
h5 -0.000813321751279 -33.5828 −34
h6 -0.003928026427016 -162.1919 −162
h7 -0.007369251224740 -304.2832 −304
h8 -0.010100012422552 -417.0389 −417
h9 -0.011030359826897 -455.4538 −455
h10 -0.009446253768217 -390.0446 −390
h11 -0.005394856624708 -222.7586 −223
h12 0.000149333848588 6.1661 6
h13 0.005461515331918 225.5110 226
h14 0.008595073979538 354.8986 355
h15 0.008115157726663 335.0824 335
h16 0.003770477274373 155.6865 156
h17 -0.003187334122221 -131.6080 −132
h18 -0.010238119573370 -422.7415 −423
h19 -0.014393107050753 -594.3048 −594
h20 -0.013336133492576 -550.6613 −551
h21 -0.006498535961441 -268.3306 −268
h22 0.004381881524485 180.9320 181
h23 0.015535244222601 641.4647 641
h24 0.022305822943639 921.0281 921
h25 0.020868642279401 861.6856 862
h26 0.009943471111150 410.5752 411
h27 -0.008151226951782 -336.5717 −337
h28 -0.027604489539197 -1139.8150 −1140
h29 -0.040512878708929 -1672.8143 −1673
h30 -0.039248482202936 -1620.6062 −1621
h31 -0.019081036923807 -787.8737 −788
h32 0.019825223708830 818.6018 819
h33 0.071783498167021 2964.0073 2964
h34 0.126657200403193 5229.7934 5230
h35 0.172409483162752 7118.9476 7119
h36 0.198397087839156 8192 8192
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Table 6.3: Ĝk(z) definitions

Ĝk(z) Definition

Ĝ0(z) h0 +h5z
−1 +h10z

−2 +h15z
−3 +h20z

−4 +
h25z

−5 + h30z
−6 + h35z

−7 + h33z
−8 +

h28z
−9 + h23z

−10 + h18z
−11 + h13z

−12 +
h8z

−13 + h3z
−14

Ĝ1(z) h1 +h6z
−1 +h11z

−2 +h16z
−3 +h21z

−4 +
h26z

−5 + h31z
−6 + h36z

−7 + h32z
−8 +

h27z
−9 + h22z

−10 + h17z
−11 + h12z

−12 +
h7z

−13 + h2z
−14

Ĝ2(z) h2 +h7z
−1 +h12z

−2 +h17z
−3 +h22z

−4 +
h27z

−5 + h32z
−6 + h36z

−7 + h31z
−8 +

h26z
−9 + h21z

−10 + h16z
−11 + h11z

−12 +
h6z

−13 + h1z
−14

Ĝ3(z) h3 +h8z
−1 +h13z

−2 +h18z
−3 +h23z

−4 +
h28z

−5 + h33z
−6 + h35z

−7 + h30z
−8 +

h25z
−9 + h20z

−10 + h15z
−11 + h10z

−12 +
h5z

−13 + h0z
−14

Ĝ4(z) h4 +h9z
−1 +h14z

−2 +h19z
−3 +h24z

−4 +
h29z

−5 + h34z
−6 + h34z

−7 + h29z
−8 +

h24z
−9 + h19z

−10 + h14z
−11 + h9z

−12 +
h4z

−13

6.2.2 Polyphase decomposition of the FIR filter

Similar to the decomposition of Hf (z) in section, Ĥpc(z) can be decomposed as

follows.

Ĥpc(z) = Ĝ0(z
5) + z−1Ĝ1(z

5) + z−2Ĝ2(z
5) + z−3Ĝ4(z

5) + z−4Ĝ4(z
5) (6.6)

The five sub filters Ĝ0 to Ĝ4 are defined in Table 6.3. All the five filters can be

implemented as shown in Figure 6.4, Figure 6.5 and Figure 6.6.
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Figure 6.4: Circuit implementation of Ĝ4(z). The shifted and added input terms a0 to a6 get multiplied with the filter coefficients
to form partial products A0 to A6.
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Figure 6.5: Circuit implementation of Ĝ0(z) and Ĝ3(z). The terms b0 to b14 gets multiplied with the filter coefficients to form the
partial products B0 to B14.
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Figure 6.6: Circuit implementation of Ĝ1(z) and Ĝ2(z). The terms c0 to c14 gets multiplied with the filter coefficients to form the
partial products C0 to C14
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6.3 Equalizer

Another way to reduce passband droop in a decimation filter is to add an equalizer

at the end. An equalizer should have an inverse sinc response in the signal band

which nullifies the droop caused by the sinc filter. The equalizer response |Heq(e
jω)|

should be 1/|Hs(e
jω)|. Consider the implemented design of the decimation filter

where the 10-tap fourth order sinc response is given by

Hs(e
jw) =

(

1

10

(

sin(10ω/2)

sin(ω/2)

)

)4

(6.7)

Thus equalizer should have a response

Heq(e
jw) =

(

1

10

(

sin(10ω/2)

sin(ω/2)

)

)

−4

(6.8)

=

(

(

10
sin(ω/2)

sin(10ω/2)

)

)4

(6.9)

The combined response of equalizer and sinc filter in the signal band is given

by Hs(e
jw) × Heq(e

jw) which ideally is unity. An FIR filter that approximates

equalizer’s inverse sinc response in (6.8) can be obtained from MATLAB using

the command fir2. fir2 designs frequency sampling-based digital FIR filters with

arbitrarily shaped frequency response[2, p. 462-468].

A 10th order equalizer is obtained using fir2 that minimizes the passband

droop to the level of 5-tap sinc filter (i.e. ∼ −0.5dB). The filter coefficients are

given in Table 6.4. Coefficients are scaled such that the maximum number of bits

required is eight (Scaling factor = 28/ max(heqk) = 233.7784). After rounding,

certain coefficients disappear, making the order of the equalizer 7. The inverse

sinc response and the final equalized response are shown in Figure 6.7.
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Figure 6.7: The inverse sinc response of a 7th order equalizer compensates the
passband droop of 2.4 dB caused by the fourth order 10-tap sinc fil-
ter (r = 2, K = 4 and M = 5). Note that the passband droop is
minimized to the level of 5-tap sinc filter. Since the equalizer is added
after the second stage FIR filter, fs/2 = 20 MHz.

Table 6.4: Finite precision equalizer coefficients. Only 6 filter coefficients are
shown because of the symmetry hk = h10 − k, k = 0, 1, . . . 10

heqk(z) Value of heqk heq′′k = heqk × 233.7784 round(heq′′k)
heq0 -0.000224456013123 -0.0524 0
heq1 0.000729824579280 0.1706 0
heq2 -0.003050302562090 -0.7130 −1
heq3 0.011414266357615 2.668 3
heq4 -0.054046950045288 -12.6350 −13
heq5 1.095054038012276 256 256
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6.4 Conclusion

After simulations, it is found that the FIR filter in second stage with 25 ns clock

has a huge positive slack. Thus in retrospect, it is obvious that even if a 74th order

FIR filter is implemented, timing constraints would have met. This would have

made the passband droop of the decimation filter only -0.5 dB.

Another way to reduce the droop is to add an equalizer after the 60th order

FIR filter described in chapters 2 and 4. As seen in the previous section, a 7th

order equalizer working at 20MHz is sufficient to reduce the droop. On balance,

this seems be a better alternative to using a sinc filter with r=1 followed by a 74th

order FIR filter.
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CHAPTER 7

Results and Conclusion

7.1 Simulation and results

The design and implementation details of the decimation filter in two stages using

polyphase decomposition are discussed in chapters 2, 3, 4 and 5. The actual cir-

cuit is modelled using the Hardware Description Language, Verilog and functional

verification is done in Modelsim by writing appropriate test benches. Once this

ideal circuit gives the same SNR obtained in Matlab for the same input stream,

we can go ahead to the final steps of synthesizing and routing the circuit.

Synopsis

Design Vision
Cadence

Encounter
Verilog file (.v)

Standrad 

Constraints (.tcl)

Synthesized
verilog 

Timing

Routed

Delay info
after routing

Synthesis Place and route

library files (.lib) netlist(.v)

info file
(.sdc)

file (.v)

(.sdf)

Figure 7.1: Block diagram of the design flow

The digital circuitry behaviorally modelled in verilog is to be mapped into

actual circuit components based on standard cell libraries and constraints. This

procedure is called synthesis and is performed using the Synopsis synthesizing

tool Design Vision. Design vision gives the synthesized verilog file as output by

reading three inputs (Figure 7.1).

1. Verilog code for the circuit



Table 7.1: Power report of the decimation filter(10 tap sinc filter + 60th order FIR
filter) obtained using Synopsis design vision(Typical case)

Module Clock Power % Power
Sinc filter 200MHz (5 ns) 4.887mW 25.9
FIR filter 40MHz (25 ns) 10.367mW 54.9
Decimator for sinc 1GHz (1 ns) 1.122mW 5.9
Decimator for FIR 200MHz (5 ns) 0.784mW 4.2
Reset synchronizer 1GHz (1 ns) 0.166mW 0.9
Total 18.887mW 100%

2. Standard library files

3. Constraints

The verilog code is a behavioural description of the circuit. The standard

cell libraries from UMC provide standard building blocks of the circuit in CMOS

180 nm technology. The constraints are given to the design vision using a .tcl

script file. There are mainly three constraints for the decimation filter circuit.

1. Meet all the timing conditions i.e. the delay should be less than 5 ns and
25 ns for the first and second stage of decimation filter respectively.

2. Minimize the area of the circuit

3. Minimize the power consumption of the circuit

Once the three input files (verilog, libraries and constraints) are ready, de-

sign vision compiles the input and creates a synthesized verilog file which is now

based on standard building blocks. Design vision also gives a timing informa-

tion file (.sdc). These files can be read using Cadence encounter to place and

route (Figure 7.1). After placement and routing, the routed netlist can be saved

as a verilog file and the timing information after routing can be extracted into a

.sdf file both of which can be used for the post-route simulations.

The final simulation results are summarized in Table 7.1 and 7.2. From Ta-

ble 7.1, it can be seen that most of the power is dissipated in the second stage FIR

filter. After simulations, it is found that the FIR filter has a huge positive slack.
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Table 7.2: Decimation filter design summary

Technology 0.18µm CMOS
Supply Voltage 1.8V
Total power 18.887mW
Area ≈ 758 × 650
Passband droop -2.4 dB at 20MHz
Simulated SNR 93.0482 dB

This means that the power consumption the FIR filter alone can be reduced much

further by decreasing the power supply voltage for FIR filter block alone.

7.2 Conclusion

The total power consumed by the entire decimation filter is 18.887mW. Thus

polyphase implementation is proved to be very useful in high speed low power

decimation filters. The low power of the decimation filter is attributed mainly

to the decrease in the operating frequency of the circuit in polyphase. The price

paid for the low power are the higher area in polyphase compared to the CIC

implementation of sinc and the increased design complexity in both the sinc and

FIR filters.

The continous time ∆Σ modulator for which the decimation filter is designed

consumes about 50mW power. Low power decimation filter described in this thesis

can be used to turn the continous time ∆Σ modulator into a complete Analog to

Digital Converter system with only 38% additional power. Amoeba view of the

final layout is given in Figure 7.2.
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Figure 7.2: Amoeba view of the circuit after layout in encounter
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APPENDIX A

Decimation Filter Implementation using CML in

First Stage

It is seen in chapter 2 that it is not possible to implement the sinc filter in CIC form

using CMOS standard cell libraries due to the timing condition which requires a

14-bit addition to be performed within 1 ns. Recall that we adopted the polyphase

architecture to counter this problem even though it is more complicated and time

consuming for the designer. Here, we discuss a different method explored for

implementing the decimation filter.

A.1 CIC implementation using Carry Save Ac-

cumulators

The challenge in the design is the requirement that the N-bit addition in the accu-

mulators in CIC sinc filter needs to be performed in just 1 ns. While it is true that

this is unachievable using conventional N-bit adders, there are other accumulator

structures which can perform the accumulation with a fixed delay independent of

the number of bits N. One such structure is Carry Save Accumulator (CSA) which

will be discussed in the following section.

A.1.1 CSA for the first accumulator in CIC

The simplest accumulator one can think of is the one in which input is added

with the previous sum with an N-bit Ripple Carry Adder (RCA) as shown in



Figure A.1(a). In such a structure, for the ith fulladder (i=0,1,..N-1),

(ai + ci + si)z
−1 = si (A.1)

⇒ si = ai(
z−1

1 − z−1
) + ci(

z−1

1 − z−1
) (A.2)

Here, due to carry propagation in the RCA, the Critical Path Delay (CPD) is

proportional to the number of input bits N. To decrease the CPD, the feedforward

path of the carry (marked red in Figure A.1(a)) can be pipelined as shown in

Figure A.1(b).

a0a1a2a3

c0c1c2c3

s1 s0s2s3

a0a1a2a3

c0c1c2c3

s0’s1’s2’s3’

c3’ c2’ c1’ c0’

      (a) Accumulator with ripple carry adder.

(b) Pipelined accumulator

Figure A.1: A simple accumulator based on ripple carry adder is pipelined to
reduce the critical path delay (CPD). After pipelining, the delay is
only 1 fulladder delay + 1 register delay.

95



For the pipelined accumulator in Figure A.1(b), the equations of additions are

(ai + c′i + s′i)z
−1 = s′i (A.3)

⇒ s′i = ai(
z−1

1 − z−1
) + c′i(

z−1

1 − z−1
) (A.4)

Since c′i = ciz
−1,

s′i = ai(
z−1

1 − z−1
) + ci(

z−2

1 − z−1
) (A.5)

From (A.2) and (A.5), note that (si − s′i) = ciz
−1 which is equal to c′i. This means

that from the pipelined circuit, in order to get the original sum si, we have to add

up s′i and c′i. i.e.

si = s′i + c′i (A.6)

The important fact is that the first accumulator in CIC sinc can be imple-

mented at a much less delay by pipelining the carry path. These high speed

pipelined accumulators are called Carry Save Accumulators (CSAs)[13]. If the

first accumulator is implemented using CSA, the Critical Path Delay (CPD) is

just one fulladder delay (neglecting register delays). Note that the delay of the

CSA is independent of the number of input bits N, making CSA useful for high

speed accumulators.

A CSA used as the first stage of the sinc filter is shown in Figure A.2. Note

that Figure A.2 is simply Figure A.1(b) redrawn. Even though the input to the

CSA shown can be 14 bits (x0 to x13), the output from the ∆Σ modulator has

only 4 bits. Thus x4 to x13 is logic ’0’ if we assume the input in unsigned integer

format.
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S’0S’1 C’0C’1S’13 C’13

x0x1x2

C’2C’3 S’2S’3

x3x13

c0c1c2c3c13

4 bit output of SDMLogic 0

Figure A.2: First accumulator in CIC structure implemented using Carry Save
Accumulator. Critical Path Delay, CPD = 1 fulladder delay + 1
register delay.

A.1.2 CSA for the later stage accumulators in CIC

The only problem with using CSA in the first accumulator of CIC is that instead of

getting a single sum (as in a conventional accumulator with an N-bit RCA), CSA

gives two vectors, a sum vector and a carry vector as outputs (s̄′ and c̄′), the sum

of which is the actual accumulated output as given in (A.6). Due to this, from the

second accumulator onwards, we need a different kind of carry save accumulators

which takes two vectors as inputs. These two-input two-output(2I2O) CSA is

shown in Figure A.3 [13].

The equations of addition for the 2I2O CSA in Figure A.3can be written as

For the ith bit position,

(sini + cini + couti + cbi + souti)z
−1 = souti (A.7)

⇒ s′outi = (sin1 + cini + couti + cbi)(
z−1

1 − z−1
) (A.8)

(A.9)
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Siin13Cin13 Sin0Cin0Sin1Cin1

Sout0Sout1 Cout0Cout1Sout13Cout13

Cb0

Ca1

Cb1

Ca0

Cb2

Ca2

Cb14

Ca14

Figure A.3: Implementation of second accumulator onwards in CIC structure us-
ing CSA. Critical Path Delay, CPD = 2 fulladder delays + 1 register
delay.

Also

couti = caiz
−1 (A.10)

Again, the actual accumulated sum is sout + cout. This circuit can be further

pipelined and retimed as shown in Figure . Then the equations become

For theithbit position,(siniz−1 + ciniz−1 + c′outi + c′bi + s′outi)z
−1 = s′outi (A.11)

(A.12)

Substituting c′outi = caiz
−2 and c′bi = cbiz

−1 in the above equation, we get

s′outi = (sini + cini + caiz
−1 + cbi)(

z−2

1 − z−1
) (A.13)

which is exactly one time unit delayed than the non-pipelined output. i.e. s′out =

soutz
−1. Since c′out = coutz

−1, the final output of the pipelined circuit is just one

time unit delayed version of the original circuit. Advantage is that we have reduced

the critical path delay to just one fulladder delay plus one register delay.
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Siin13Cin13 Sin0Cin0Sin1Cin1

Sout0Sout1 Cout0Cout1Sout13Cout13

Cb0
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Cb14
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Figure A.4: Pipelining the 2I2O accumulator in the second and later stages of CIC

SiniCini

S’outi C’
outi

Cbi+1

Cai+1
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ai

Cbi

C’
bi

SiniCini

S’outi C’
outi

Cbi+1

Cai+1

Cai

C’
ai

Cbi

C’
bi

Figure A.5: Retiming the 2I2O accumulator in the second and later stages of CIC
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Siin13Cin13 Sin0Cin0
Sin1Cin1

Sout0Sout1 Cout0Cout1Sout13Cout13

Cb0

Ca0

Cb1

Ca1

Cb2

Ca2

Cb13

Ca13

Figure A.6: Carry Save Accumulator from second stage onwards in sinc filter.
Pipelined and retimed so that Critical Path Delay, CPD = 1 Fulladder
delay + 1 Register delay.

The 2I2O CSA has a CPD of two fulladder delays (neglecting register delays).

This critical path delay can be further reduced to 1 fulladder delay by pipelining

and retiming as shown in Figure A.6. Thus using CSAs, the simple CIC architec-

ture of the sinc filter can be implemented as long as the sampling time period is

less than the sum of two fulladder delays and one register delay. The output at

the end of integrator chain consists of two vectors Sout and Cout, the sum of which

is the actual output of the accumulator cascade. This final addition of Sout and

Cout can be performed later in the low frequency region.

A conventional fulladder will have three gate delays. This means, in order to

use the CIC architecture for sinc filter, we need to have six gate delays plus one

register delay to be less than 1 ns. Even this is very stringent timing condition

in CMOS technology and the synthesized circuit in Synopsis Design Vision will

not meet the timing constraints. Thus we have two options: Either go for a faster

technology or logic style or abandon the simple CIC architecture in search for a

better structure.

In the earlier chapters, it is seen that to implement the decimation filter,

100



we did abandon the CIC form in favor of polyphase decomposition. Sticking

to 180 nm, another option available is to implement the CIC form using carry save

accumulators using a faster logic style. An example of a faster logic style is the

Current Mode Logic (CML) where we trade off power for performance. Thus if

the CIC structure of the sinc filter is implemented using CSAs made of gates in

current mode logic, it will meet the timing constraints by consuming higher power.

A preliminary analysis of implementation of sinc filter in CML is discussed in the

subsequent sections.

A.2 Implementation in CML

To implement the accumulators, we need two building blocks. Full adders and

registers. Circuit details of these blocks are given in the following sections.

A.2.1 Adders

A conventional fulladder is made of two half adders and an OR gate as shown

in Figure A.7. The XOR, AND and OR logic gates in the fulladder are made in

CML as shown in Figure A.8 and Figure A.9.

a
b

c

Fulladder
HA HA

s

c

Figure A.7: A fulladder implementation using two half adders and an OR gate

The transistor level implementations of logic gates given in Figures A.8 and A.9

are simulated in cadence and the static power consumption from a 1.8V supply for

the three corners of resistances are given in Table A.1. The static current varies
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with the value of R, hence the variation in power. All simulations are done using

ss-transistors at 80o Celsius. The value 2I0R is chosen to be 0.8V.

Vdd Vdd

Vbias

Yp Yn

Bp Bn

An AnAp Ap

fig 8 : CML XOR gate

M1 M2 M3 M4

M5 M6

M7

Tx Sizes

For all transistors,
W/L= 240n/180n
R = 40k

R R

Io

Figure A.8: XOR gate implementation in CML

Vdd Vdd

RR R R
Yp YpYn Yn

Ap

Ap

Bp

BpAn AnBn

Bn

(a) AND (b) OR

Vbias Vbias

M5 M5

M2 M2

M1 M1

M3 M3M4 M4

M1,2 = 800n/180n
M3,4 = 400n/180n
M5 =240n/180n
R = 40k

Io Io

Figure A.9: AND and OR gate implementation in CML
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Table A.1: Static power consumption for XOR, AND and OR gates

Static power res max res typ res min
consumption
XOR 14.41 µW 17.4 µW 22.1 µW
ANDOR 15.21 µW 18.35 µW 23.45 µW

Table A.2: Static power consumption of the D-Flip flop and the power generation
circuit

Static power res max res typ res min
Consumption
D-Flipflop 50.11 µW 63.3 µW 85.5 µW
Bias Generation 98.99 µW 120 µW 156.4 µW
Circuit

A.2.2 Registers and bias generation

A one bit register required in the accumulator is made using two latches in Master-

Slave configuration. The circuit given in Figure A.10 is simulated for static power

consumption and the results are given in Table A.2. Again the simulations are done

for the power supply Vdd = 1.8 V, ss-transistors at 80o Celsius. The differential

output swing 2I0R of the CML is chosen to be 0.8V.

To keep the differential output swing of the CML gates (2I0R) independent of

the variations in R, a bias generation circuit shown in Figure A.11 is used. The

current (Vdd − Vcm)/R generated by this bias generation circuit is mirrored to the

tail transistors of other gates. This makes I0 inversely proportional to R and 2I0R

is 0.8V independent of R variations. This also explains lower power for maximum

R. I0 decreases as R increases which in turn decreases static power (Vdd × I0).

A.3 Results and conclusion

A single bit accumulator to be used in the first accumulator of CIC is built using

the building blocks discussed in the previous sections and the performance of the
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(a)  CML implementation of a latch (b) Master-slave D flipflop 
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M5 M6

M1 M2 M3 M4
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Figure A.10: The CML implementation of a latch and the implementation of D-
Flipflop using two latches in Mater-Slave fashion.
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R

       Bias generation which keeps output swing 
independent of R variations

Vbias

Figure A.11: Bias generator circuit
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Table A.3: Static power and timing analysis of a single bit accumulator in the first
accumulator of CIC

Single bit res max res typ res min
accumulator
Static power 321.5µW 397.4µW 521.5µW
CPD(1 fulladder) 633 ps 518 ps 447 ps
+ 1 register delay)

circuit is summarized in Table A.3. The critical path delay(CPD) shown in the

table is the time required to reach 90% of the final value. Note that even the worst

case delay of 633 ps is much lower than 1 ns. Thus the accumulator can be made

to work easily at 1GHz.

Using these data, the static power consumption for the entire fourth order sinc

filter working at 1GHz can be estimated. This is found to be greater than 23mW,

28mW, and 37mW for the maximum, typical and minimum resistance corners

respectively. Note that this is only for the first stage of the decimation filter.

As we have seen in Chapter 7, this power consumption number is much higher

than that obtained using polyphase decomposition thereby justifying the choice

of higher design complexity in polyphase over simple CIC design for low power.
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APPENDIX A

Asynchronous reset

It is seen in chapter 5 that for clock dividers, an asynchronous reset is used.

To avoid metastability problems while de-asserting the reset, a standard reset

synhronizer circuit as shown in Figure A.1 is used for both the ring counters. Also

a condition that reset should be asserted during the negative edge of the 1 ns clock

is also specified to ensure robust performance.

D Q D Q

External reset

clk1

1
(Tied high) Reset to ring counter

Asynchronous

Figure A.1: Reset synchronizer circuit used to ensure proper asynchronous reset.
For the second ring counter used for FIR filter, a similiar reset syn-
chronizer circuit is required with clk5 (5 ns clock) instead of clk1 (1 ns
clock).
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