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ABSTRACT

The Gaussian two-way relay channel and the Gaussian two-way diamond channel are

studied. First, we derive an analytical expression for the outer bound to the capacity

region of the two-way relay channel. This analytical outer bound is found to achieve

symmetric capacity within 0.5 bits for some channel conditions where the direct link

is weak. A Gaussian two-way diamond channel consists of two nodes communicating

with each other with the help of two half-duplex relays in diamond topology. Using

multiple relays increases capacity of the network. We consider mixing of the two flows

at the relays to increase the capacity further. This is accomplished using physical layer

network coding or the compute and forward strategy. We propose two protocols for

the diamond channel based on this scheme - the CF-CMAC and the CF-BC protocols.

We also extend the uni-directional Multi-hopping Decode and Forward(MDF) protocol

to the case of two-way relaying over a diamond channel, by time sharing between the

flows in the two directions. We observe that the compute and forward based schemes

achieve several rate pairs that cannot be achieved by simple time sharing between the

two one way flows. Finally, we propose an outer bound to the achievable rate region of

the diamond channel using the cut-set bound. We observe that the proposed protocols

achieve rates close to the outer bound under some channel conditions. We also derive

outer bounds to the capacity region of the gaussian diamond channel with direct link

between relays and with direct link between the nodes. The outer bounds are compared

to investigate the effect of direct links on the achievable rate region.

—–
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CHAPTER 1

INTRODUCTION

The relay channel was first introduced by van der Muelen in 1971. A two-way or

bidirectional relay channel consists of two nodes exchanging messages through one or

more relays. Relay networks find applications in multi-hop wireless networks, sensor

networks with transmitter power limitations etc.. Relay networks of different topologies

have been studied under different relaying schemes like Amplify and Forward (AF),

Decode and Forward (DF), Compress and Forward (CF) and Lattice forward. Among

the different relay channels, the three node two-way relay channel and the diamond

relay channel have attracted significant interest. We restrict our attention to these two

channels in the current thesis. We consider half-duplex relays since they are more

practical and cost-efficient than full-duplex relays.

Three node two-way relaying with and without direct link have been studied in

[1, 2, 3, 4, 5] and [6, 7, 8, 9]. In [6, 1, 2], the achievable rate regions of various two-way

relaying protocols are compared. A generalised outer bound for the capacity region for

all relaying protocols was derived in [10] using the half-duplex cutset bound. This outer

bound considers all possible states of the network, as opposed to the bounds in [1, 2, 3]

which are protocol specific. In the present thesis, we derive an analytical outer bound

for capacity of the three node two-way channel(as opposed to an optimisation prob-

lem formulation). Using this analytical outer bound, we obtain the symmetric capacity

within 0.5 bits for some channel conditions where the direct link is weak.

The half-duplex Gaussian diamond relay channel where a source node and a desti-

nation node communicate with each other through two non-interfering relays has been

studied in [11], [12] and [13]. In [12], the the AF, CF and DF relaying schemes have

been generalised to the diamond channel and some hybrid schemes also have been pro-

posed. In [13], multi-hopping decode-and-forward (MDF) protocols for one-way com-

munication were proposed to achieve rates within a constant gap of a capacity outer

bound. The diamond channel with interfering relays was studied in [14]. In the present

thesis, we consider the problem of two-way communication over a diamond relay chan-

nel, which appears to have not received attention in existing literature. We propose



relaying protocols for the bidirectional communication over this channel, and deter-

mine their achievable rate regions. An interesting aspect of two-way relaying is that

there are two flows and and mixing of the two flows at the relay can be exploited to

improve the rates in both directions. This is achieved by physical layer network coding

or the compute-and-forward strategy. Coding schemes based on nested lattice coding

and compute and forward have been proposed in [15, 16]. In this work, we apply the

nested lattice coding scheme in [15] to the case of diamond relay channel. Based on

this, we propose two protocols- The CF-CMAC(Compute and Forward Multiple Ac-

cess Channel) and the CF-BC(Compute and Forward-Broadcast), that use compute and

forward scheme at the two relays. The CF-CMAC is a three state protocol and uses

nested lattice codes. The two terminal nodes simultaneously transmit to one relay in

the first state and to the second relay in the second state. The third state is a Compound

MAC in which the two relays simultaneously broadcast to both nodes. In the CF-BC

protocol, the first two states are similar to the CF-CMAC, followed by two states in

which one relay broadcasts to the two nodes at a time. The use of Compound MAC

state in CF-CMAC increases the achievable rate region significantly over the CF-BC.

We also extend the MDF protocol in [13] to two-way relaying by simple time sharing

between the flows in the two directions. We call this the two-way MDF protocol. The

first four states constitute flow in one direction, and four more states constitute flow in

the reverse direction. We also analyse and compare the achievable rate regions of all

the three protocols. Finally, we look into the possibility of time sharing between these

protocols to increase the achievable rate region. Protocols for the diamond channel with

direct links are also proposed by extending the approaches in [3] and [14].

We also derive outer bounds to the capacity regions of the gaussian diamond channel

with and without direct links. This is done by extending the approach in [10] to the

diamond channel. The outer bounds are compared to investigate the effect of the direct

links on capacity. The outer bounds for the capacity region of the diamond channel are

compared with the achievable rate regions of the proposed protocols.
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1.1 Organization of Thesis

The organization of this thesis is as follows.

• Chapter 2 discusses the generalised numerical outer bound for the capacity of the

Gaussian three node two-way relay channel and derives an analytical outer bound

for the same.

• Chapter 3 discusses the Gaussian Two-way Diamond channel without direct link

and some of the existing protocols for this channel.

• Chapter 4 discusses some new protocols for the Gaussian Two-way Diamond

channel - Two-way MDF, CF-BC and CF-CMAC protocols.

• Chapter 5 deals with the derivation of outer bound to the capacity region of the

gaussian diamond relay channel without direct links.

• Chapter 6 deals with the achievable rates and outer bounds of the gaussian dia-

mond channel with direct links.

• Chapter 7 presents some numerical results for the achievable rate regions of dif-

ferent protocols and comparison with outer bounds.

• Chapter 8 concludes this thesis discussing possible future works.
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CHAPTER 2

THE GAUSSIAN TWO-WAY RELAY CHANNEL

2.1 System Model

A

γ1

B

γ2

R

γ3

Figure 2.1: Two-way Gaussian Relay Channel with Direct Link

Consider a two-way relay channel with 3 nodes - two terminal nodes A and B

wanting to communicate with each other and relay R assisting communication between

them. All nodes are half duplex. The network can be in different states depending on

whether each of the nodes is in transmit or receive state. The channel is Gaussian with

a receiver noise variance of N . Let P be the transmit power of all nodes. The channel

is assumed to be reciprocal and constant. Channel state information is assumed to be

available at all nodes. The SNRs of the different links are denoted as γ1 = h21P
N

,γ2 =

h22P
N

and γ3 = h23P
N

, where h1, h2, h3 are the gains of the links a ↔ r, b ↔ r, a ↔ b

respectively. We useC(γ) = log2(1+γ) to represent the capacity of a complex gaussian

channel with SNR γ.

Several protocols have been proposed for two-way communication over the Gaus-

sian relay channel and their achievable rate regions have been obtained. Protocol spe-

cific outer bounds for the capacity region have also been derived and the gap between

the achievable rate region and the outer bound has been characterised. A generalised

outer bound for the capacity of the half-duplex two way relay channel was proposed in

[10], which is applicable to all protocols. This outer bound is proposed as a solution of

a linear program. In this thesis, we derive an analytical expression that is also an outer

bound by analysing the dual of the linear program in [10]. This can be used to gain a

better understanding of the bound.



2.2 Analytical Outer Bound for the Capacity Region of

the Gaussian Two-Way Relay Channel

The outer bound for the capacity region of the Gaussian Two-way relay channel has

been obtained in [10] as:

Given Ra = kRb for some k ≥ 0, the maximum possible Rb is upper-bounded by Cbk

obtained by solving the following linear program:

Cbk = max
Rb,{λi}

Rb,

subject to

kRb ≤ λ1C(γ1 + γ3) + λ3C(γ1) + λ5C (γ3) ,

kRb ≤ λ1C(γ3) + λ4C(γ2) + λ5C
(

(
√
γ2 +

√
γ3)2

)
,

Rb ≤ λ2C(γ2 + γ3) + λ3C(γ2) + λ6C (γ3) ,

Rb ≤ λ2C(γ3) + λ4C(γ1) + λ6C
(

(
√
γ1 +

√
γ3)2

)
,

6∑
i=1

λi ≤ 1, λi > 0, Rb > 0.

(2.1)

The dual of the above linear program can be written as:

min
{yi}

y5

subject to

y5 ≥ y1C(γ1 + γ3) + y2C (γ3) ,

y5 ≥ y3C(γ2 + γ3) + y4C (γ3) ,

y5 ≥ y1C(γ1) + y3C (γ2) ,

y5 ≥ y2C(γ2) + y4C (γ1) ,

y5 ≥ y1C(γ3) + y2C
(
(
√
γ2 +

√
γ3)2

)
,

y5 ≥ y3C(γ3) + y4C
(
(
√
γ1 +

√
γ3)2

)
,

ky1 + ky2 + y3 + y4 ≥ 1.

(2.2)
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The value of the dual program at any feasible point is an upper bound on the value of the

primal problem. Choosing an appropriate feasible point in the dual program provides a

good upper bound on Rb. The bound on Rb is obtained by choosing:

y1 =
2k − 1

2k2

C(γ2)

C(γ1) + C(γ2)
; y2 =

2k − 1

2k2

C(γ1)

C(γ1) + C(γ2)
;

y3 =
1

2k

C(γ1)

C(γ1) + C(γ2)
; y4 =

1

2k

C(γ2)

C(γ1) + C(γ2)

For any k ≥ 1, Rb is upper-bounded as

Rb ≤ max{T1, T2, T3, T4},

where

T1 =
3k − 1

2k2

C(γ1)C(γ2)

C(γ1) + C(γ2)
,

T2 =
2k − 1

2k2

C(γ2)C(γ1 + γ3) + C(γ1)C(γ3)

C(γ1) + C(γ2)
,

T3 =
2k − 1

2k2

C(γ2)C(γ3) + C(γ1)C((√γ2 +
√
γ3)2)

C(γ1) + C(γ2)
,

T4 =
1

2k

C(γ1)C(γ3) + C(γ2)C((√γ1 +
√
γ3)2)

C(γ1) + C(γ2)
.

This analytical outer bound can be used to simplify the characterisation of capacity for

different channel conditions. As an illustration, for k = 1 case, T2 ≤ T4. Therefore, we

get Rb ≤ max{T1, T3, T4}. For γ1 = γ2 = γ and k = 1, we get

Rb ≤ max

{
C(γ)

2
,
1

4

[
C(γ3) + C((√γ +

√
γ3)2)

]}
. (2.3)

A similar result can be obtained for k < 1 as well. In this case, we can set Rb = k′Ra,

where k′ > 1 and use the same technique as above. The expressions obtained for T1 to

T4 will be similar except that γ1 and γ2 are interchanged in each expression.

Rb is also upper bounded by the upper bound for one-way relaying from B to A with

Ra = 0, i.e., we have

Rb ≤
C(γ1 + γ3)C((√γ2 +

√
γ3)2)− C2(γ3)

C(γ1 + γ3) + C((√γ2 +
√
γ3)2)− 2C(γ3)

.

6



This bound is obtained by solving the dual program for one-way relaying. When there

is no direct link, i.e., when γ3 = 0, this reduces to

Rb ≤
C(γ1)C(γ2)

C(γ1) + C(γ2)
,

where the bound is the capacity of the half-duplex two-hop linear network [17].

Capacity Results:

We can obtain the following results for capacity from (2.3).

1. For γ1 = γ2 = γ and k = 1, the upper bound on Ra is C(γ)/2 for γ3 ≤ γ30,

where γ30 satisfies f(γ30) = 2C(γ) where f(γ3)
4
= C(γ3)+C((√γ+

√
γ3)2). That

means, when the direct link is weak, the upper bound for capacity is C(γ)/2. The

lattice coding scheme in [15] can achieve rates within 0.5 bits of this upper bound

without any direct link. Therefore, for the weak direct link regime specified by

γ30, C(γ)/2 is the capacity within 0.5 bits and can be achieved without using the

direct link.

2. For γ1 6= γ2 and k = 1, the upper bound on Ra is C(γ1)C(γ2)/(C(γ1) + C(γ2))

for γ3 ≤ min(γ31, γ32), where γ31, γ32 satisfy f1(γ31) = f2(γ32) = 2C(γ1)C(γ2)

where f1(γ3)
4
= C(γ2)C(γ3)+C(γ1)C((√γ2 +

√
γ3)2) and f2(γ3)

4
= C(γ1)C(γ3)+

C(γ2)C((√γ1 +
√
γ3)2).This reduces to C(γ1)C(γ2)/(C(γ1) + C(γ2)) when the

direct link is weak. This is equal to the one-way relaying bound when γ1 6= γ2

without the direct link.

7



CHAPTER 3

THE GAUSSIAN TWO-WAY DIAMOND CHANNEL

WITHOUT DIRECT LINKS

3.1 System Model

A

γa1

B

γb1

R1

R2

γa2 γb2

Figure 3.1: Gaussian Diamond Channel

Consider two nodesA andB whose bi-directional communication is assisted by two

relays,R1 andR2 in diamond topology. No link is present between the two nodesA and

B or between the two relays. So all communication is through the two non-interfering

relays. All nodes are half duplex. The network can be in different states depending

on whether each of the nodes is in transmit or receive state. The channel is Gaussian

with a receiver noise variance of N . The channel is assumed to be known, reciprocal

and constant. Channel state information is assumed to be available at all nodes. Let

P be the transmit power of all nodes. The SNRs of the different links are denoted as

γa1 = h2a1P
N

, γa2 = h2a2P
N

, γb1 = h2b1P
N

and γb2 = h2b2P
N

, where N is the receiver noise

variance. We use C(γ) = log2(1 + γ) to represent the capacity of a complex gaussian

channel with SNR γ.

The diamond relay network has 16 possible states, because each of the four nodes

can be either in transmit or receive state(half-duplex constraint). So, on the whole there

are 24 = 16 states. Of these, we can ignore the 2 states in which all nodes are in transmit

or all are in receive states, as they do not serve any purpose. The remaining 14 useful



states can be seen in Figure 3.2. For example, in state 3, nodesA andR2 are transmitting

to nodes R1 and B respectively which are receiving.

Let Ra denote the rate of communication from A to B and Rb denote the rate of

communication from B to A.
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Figure 3.2: States in a half-duplex Gaussian Diamond Relay Channel
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3.2 Existing protocols for a Gaussian Diamond Relay

channel

The problem of two-way communication over a diamond relay channel that we deal

with in this thesis has not been given attention in existing literature. But protocols have

been proposed for one-way communication over a diamond channel. We discuss some

of them in this section.

Multi-hop with spatial reuse: Multi-hop with spatial reuse[12] is a decode and for-

ward protocol using states 2 and 3 of Figure 3.2. In this scheme, in the first state, A

sends a new message to R1 which decodes it. In the same state, R2 sends the message

previously received from A, to B. In State 2, A sends new message to R2, which de-

codes, and R1 sends the message previously received from A to B. This scheme makes

full spatial usage of the network. Denoting the end to end rate through R1 as Z1 and

through R2 as Z2, the maximum achievable rate using this protocol is

CMS = max
λ,Z1,Z2

Z1 + Z2 s.t

Z1 ≤ λC(γa1),

Z2 ≤ λC(γb2),

Z1 ≤ (1− λ)C(γb1),

Z2 ≤ (1− λ)C(γa2),

0 ≤ λ ≤ 1,

Z1 ≥ 0, Z2 ≥ 0.

(3.1)

Broadcast-Multiaccess With Common Message: There are two states- Broadcast and

Multiple Access. In the first state, A sends two independent information streams by

broadcast, the two relays. The relay with the better channel to A can decode both

messages, so the message to the relay with a weaker link is the ‘common’ message.

In the next state, the two relays send the two information streams to the destination by

using multiple access with common message. If R1 transmits its own message with rate

Z1 and the common message with rate Z2, and R2 sends only the common message,

10



then the capacity region is characterized as

CBM = max
λ,Z1,Z2

Z1 + Z2 s.t

Z1 ≤ λC(αγa1),

Z2 ≤ λC((1− α)γa2

1 + αγa2

),

Z1 ≤ (1− λ)C((1− ρ)γb1),

Z1 + Z2 ≤ (1− λ)C(γb1 + γb2 + 2
√
ργb1γb2),

0 ≤ λ ≤ 1, Z1 ≥ 0, Z2 ≥ 0.

(3.2)

Multi-hop Decode and Forward protocol: The multi-hop decode and forward(MDF)

protocol was proposed in [13] for one-way relaying. It is a four state protocol that uses

states 1-4 of Figure 3.2. Relaying scheme used is decode and forward, messages are

decoded at the end of each state. This scheme is shown to achieve the capacity of the

diamond channel when C(γa1)C(γa2) = C(γb1)C(γb2). The achievable rate region for

this protocol can be written as

State 1:

Z1
ar1
≤ λ1C(αγa1),

Z1
ar2
≤ λ1C

(
(1− α)γa2

1 + αγa2

)
.

(3.3)

State 2:

Z2
ar1
≤ λ2C(γa1),

Z2
r2b
≤ λ2C(γb2).

(3.4)

State 3:

Z3
ar2
≤ λ3C(γa2),

Z3
r1b
≤ λ3C(γb1).

(3.5)

11



State 4:

Z4
r1b
≤ λ4C(γb1),

Z4
r2b
≤ λ4C(γb2),

Z4
r1b

+ Z4
r2b
≤ λ4C(γb1 + γb2).

(3.6)
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CHAPTER 4

PROTOCOLS FOR THE TWO-WAY GAUSSIAN

DIAMOND CHANNEL

This chapter discusses some new protocols for two-way communication over the Gaus-

sian Diamond Relay channel - The Two-way MDF protocol, the CF-CMAC protocol

and the CF-BC protocol. Specifying a relaying protocol involves specifying the se-

quence of states used and the coding/decoding schemes for each of these states.

4.1 Two-way MDF protocol

Two-way MDF is a simple two-way protocol that uses the MDF protocol of [13] for

both direction flows (A → B and B → A) in a time-sharing manner. Thus, States

1-4 in Figure 3.2 will be used for communication from A to B, and States 5-8 will be

used for communication from B to A. We name this the Two-way MDF protocol. The

two-way MDF uses Decode and Forward scheme at the relays.

Consider the flow from A to B. State 1 is a broadcast state in which A transmits

independent messages to both the relays and the relays decode these messages at the

end of the state. In state 2, A sends a new message to R1 and R2 transmits a re-encoded

version of the message received in state 1 to B. In state 3, A sends a new message to

R2 while R1 re-encodes and transmits the messages decoded from states 1 and 2 to B.

The residual information is forwarded to B by the two relays in State 4 which is a MAC

state.

The maximum achievable rate for the one-way MDF protocol can be computed as

in [13]. Suppose this rate for communication from A to B is Ra−mdf and for commu-

nication from B to A is Rb−mdf , then the achievable rate region for the two-way MDF

protocol is the triangular region enclosed by the three straight lines: (1) Ra = 0, (2)

Rb = 0, and (3) the line joining (0, Rb−mdf ) and (Ra−mdf , 0).



4.2 CF-CMAC Protocol

The Compute-and-forward-Compound MAC (CF-CMAC) protocol is a three state pro-

tocol using States 9, 10 and 13 of Figure 3.2. States 9 and 10 are Multiple Access

Channels in which both the nodes A and B transmit to one of the relays. State 13 is an

interference channel in which both the relays simultaneously transmit to both nodes A

and B. States 9 and 10 employ nested lattice coding scheme as in [18]. This protocol

employs a compute and forward strategy at the relays, making use of the fact that a relay

need not decode all the information received by it, it only needs to forward sufficient

information to enable the receiving nodes to decode correctly. The relays attempt to

decode the sum of the messages received from A and B, instead of decoding the indi-

vidual messages. This sum is forwarded to the two nodes in State 13.

Encoding and Decoding Using Doubly Nested Lattice codes: In [19], Erez and Zamir

showed that nested lattice codes can be used to approach the capacity of point-to-point

AWGN channels. A nested lattice code L is the set of all points of a fine lattice Λ that

are within the fundamental Voronoi region ν1 of a coarse lattice Λ1, i.e., L = {Λ∩ ν1}.

In [18], it was shown that for every P1 ≥ P2 ≥ 0, there exist a sequence of n-

dimensional lattice chains Λ1
n ⊆ Λ2

n ⊆ Λc1
n, as n → ∞, σ2(Λ1

n) = P1 and

σ2(Λ2
n) = P2. The rate of the nested lattice code L2 = {Λn ∩ ν2} associated with

the lattice partition Λn/Λ2
n, as n→∞ approaches

R2 =
1

n
log |L2| =

1

n
log

Vol(ν2)

Vol(ν)
, (4.1)

while the coding rate of the nested lattice code L1 = {Λn ∩ ν1} associated with the

lattice partition Λn/Λ1
n, as n→∞ approaches

R1 =
1

n
log |L1| =

1

n
log

Vol(ν1)

Vol(ν)

=
1

n
log

Vol(ν1)

Vol(ν2)
+R2 = R2 +

1

2
log

P1

P2

.

(4.2)

We use an encoding/decoding scheme similar to the one used in [18].

State 9: Consider an n-dimensional lattice chain Λ1
n ⊆ Λ2

n ⊆ Λc1
n. Here, Λc1

n

is the coding lattice. Two codebooks L1, L2 defined as L1 = {Λn
c1 ∩ ν1} and L2 =

{Λn
c1 ∩ ν2} are used for encoding, with the bigger codebook L1 being used for the node

14



with the better link to R1. Let A ↔ R1 link be better than B ↔ R1, i.e, γa1 ≥ γb1.

Let the transmit power be P at all nodes. As n → ∞, the second moments of Λ1 and

Λ2 satisfy σ2(Λ1
n) ↔ γa1 and σ2(Λ2

n) ↔ γb1. Node A chooses a codeword w1 ∈ L1

to transmit to R1 while B chooses w2 ∈ L2. The nodes add random dithers u1 and

u2 to these codewords, where u1 ∼ Unif(ν1) and u2 ∼ Unif(ν2). The dither vectors

are known at both the nodes and at the relays. Dithers are chosen to be independent of

each other, and independent of the messages w1,w2. Hence, from the crypto-lemma of

[18], each Xi will be independent of wi and distributed as Unif(νi). The nodes A and

B transmit

X1 =
1

ha1

[(w1 + u1)mod Λ1],

X2 =
1

hb1
[(w2 + u2)mod Λ2].

(4.3)

respectively. The transmit signals are pre-amplified to ensure the relay receives a noisy

version of the sum w1 + w2.

The relay R1 receives

YR1 = ha1X1 + hb1X2 + ZR1 , (4.4)

where ZR1 is the additive gaussian noise. The relay computes αYR1 and subtracts the

dithers to obtain

ŶR1 =(αYR1 − u1 − u2)mod Λ1

=(αha1X1 + αhb1X2 + αZR1 − u1 − u2)mod Λ1

=(ha1X1 − u1 + hb1X2 − u2

+ (α− 1)ha1X1 + (α− 1)hb1X2 + αZR1)mod Λ1

=(T1 + ẐR1)mod Λ1,

15



where

T1 =(ha1X1 − u1 + hb1X2 − u2)mod Λ1

=[(w1 + u1)mod Λ1 + (w2 + u2)mod

Λ2 − u1 − u2]mod Λ1

=(w1 −QΛ1(w1 + u1) + w2 −QΛ2(w2 + u2))mod Λ1,

ẐR1 =− (1− α)ha1X1 − (1− α)hb1X2 + αZR1 .

It can be proved that the rate is uniquely maximised by choosing α to be the Minimum

Mean Square Estimate (MMSE)coefficient,

α =
γa1 + γb1

1 + γa1 + γb1
.

Here, ẐR1 is the effective noise at the relay, with variance

Var(ẐR1) =
(γa1 + γb1)N

1 + γa1 + γb1
. (4.5)

So, the effective noise variance has reduced, resulting in higher effective SNR at the

relay.

According to crypto-lemma, T1 is uniformly distributed over L1 and independent

of ẐR1 . Instead of decoding w1 and w2 individually, R1 attempts to decode T1 using

Euclidean Lattice Decoding, by finding the codeword closest to ŶR1 in the coding lattice

Λc1
n using the quantizer Qλc1(·).So, the relay decodes

T̂1 = Qλc1(ŶR1).

An error occurs in the decoding of T1 if ẐR1 /∈ νc1 . So, probability of error can be

written as Pr(ẐR1 /∈ νc1), which according to [16] vanishes as n→∞ if

σ2(Λc1) > Var(ẐR1). (4.6)
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From (4.1), (4.2), (4.6), the rate constraints for State 1 can be written as

Z9
ar1
≤ λ9

[
1

2
log

(
γa1

γa1 + γb1
+ γa1

)]+

,

Z9
br1
≤ λ9

[
1

2
log

(
γb1

γa1 + γb1
+ γb1

)]+

.

(4.7)

State 10: State 10 follows a similar lattice coding scheme as State 9, using a different

lattice chain Λ3
n ⊆ Λ4

n ⊆ Λc2
n. We assume A↔ R2 link is better than B ↔ R2 link.

Nodes A and B choose messages w3,w4 from the codeword sets L3 = {Λn
c2 ∩ ν3} and

L4 = {Λn
c2 ∩ ν4},and transmit them using dithers u3 and u4. The relay attempts to

decode T2 from the received vector YR2 , where

T2 = (w3 −QΛ3(w3 + u3) + w4 −QΛ4(w4 + u4))mod Λ3. (4.8)

The relay computes

ŶR2 = (αYR2 − u3 − u4)mod Λ3, (4.9)

and obtains T2 as

T̂2 = Qλc2(ŶR2). (4.10)

Rate constraints for state 10 can be written as

Z10
ar2
≤ λ10

[
1

2
log

(
γa2

γa2 + γb2
+ γa2

)]+

,

Z10
br2
≤ λ10

[
1

2
log

(
γb2

γa2 + γb2
+ γb2

)]+

.

(4.11)

State 13: In state 13, both the relays simultaneously transmit to both nodes A and B.

RelayR1 generates a codebookCR1 consisting of |L1| n-length sequences, with each el-

ement being i.i.d having distributionN (0, P ). We assume that the relays make no error

in decoding T1 and T2 in the first two states. Since T1 is uniformly distributed over L1,

for every T1 = t1 ∈ L1, the relay chooses to transmit a particular XR1(t1) ∈ CR1 . Sim-

ilarly, R2 generates a random codebook CR2 consisting of |L3| n-length sequences,with

each element being i.i.d having distribution N (0, P ) and for every T2 = t2 ∈ L3, the

relay broadcasts a particular XR2(t2) ∈ CR2 . This results in Multiple Access Channels
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at nodes A and B. Node A receives

Ya = ha1XR1 + ha2XR2 + Za, (4.12)

from which it decodes XR1 and XR2 separately. Since there is a one-to-one correspon-

dence between the elements of L1 and CR1 , A can obtain T̂1 from XR1 . Also, A can

obtain T̂2 from XR2 due to the one-to-one correspondence between the elements of L3

and CR2 . Similarly, B can obtain T̃1 and T̃2 from the received vector

Yb = hb1XR1 + hb2XR2 + Zb. (4.13)

w1 and w3 are messages transmitted by A to the relays, and hence A has apriori

knowledge ofw1 andw3. The dither vectors are also known at all the nodes. This apriori

knowledge can be used as side-information for decoding [20]. Using the knowledge of

w1, A can decode w2 from T̂1 as

w2 = [T̂1 − w1]mod Λ2. (4.14)

Using w3, A can decode w4 from T̂2 as

w4 = [T̂2 − w3]mod Λ4. (4.15)

Similarly, using its apriori knowledge of w2, w4 and the dithers, node B can decode w1

and w3 from T1 and T2 as

w1 = [T̃1 − w2 +QΛ2(w2 + u2)]mod Λ1,

w3 = [T̃2 − w4 +QΛ4(w4 + u4)]mod Λ3.
(4.16)

From (4.7), (4.11) the rate constraints for the CF-CMAC protocol can be sum-

marised as follows:

State 9:

Z9
ar1
≤ λ9

[
C(γa1 −

γb1
γa1 + γb1

)

]+

,

Z9
br1
≤ λ9

[
C(γb1 −

γa1

γa1 + γb1
)

]+

.

(4.17)
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State 10:

Z10
ar2
≤ λ10

[
C(γa2 −

γb2
γa2 + γb2

)

]+

,

Z10
br2
≤ λ10

[
C(γb2 −

γa2

γa2 + γb2
)

]+

.

(4.18)

State 13: From [20], we can write the rate constraints for the broadcasting relays with

apriori knowledge of some messages as

Z13
r1a
≤ λ13C(γa1),

Z13
r1b
≤ λ13C(γb1).

(4.19)

and

Z13
r2a
≤ λ13C(γa2),

Z13
r2b
≤ λ13C(γb2).

(4.20)

at R1 and R2. The MACs at A and B impose two additional constraints on the sum

rates as follows:

Z13
r1a

+ Z13
r2a
≤ λ13C(γa1 + γa2),

Z13
r1b

+ Z13
r2b
≤ λ13C(γb1 + γb2).

(4.21)

Equating the information received at a relay from one node to the information forwarded

by it to the other node, gives us four equality constraints.

Z9
ar1

= Z13
r1b
,

Z9
br1

= Z13
r1a
,

Z10
ar2

= Z13
r2b
,

Z10
br2

= Z13
r2a
.

(4.22)

The rates of information transfer between the end nodes A and B in the two directions

are

Ra = Z9
ar1

+ Z10
ar2
,

Rb = Z9
br1

+ Z10
br2
.

(4.23)
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The achievable rate region can be obtained by taking Rb = kRa and solving the linear

program max{λi}Rb with (4.17) to (4.22) and
∑

i=9,10,13 λi = 1 as constraints, for vari-

ous values of k.

Time-sharing between CF-CMAC and Two-way MDF: The CF-CMAC protocol

achieves some rate-pairs that the two-way MDF protocol cannot achieve. Time-sharing

between CF-CMAC and two-way MDF can be used to achieve all convex combinations

of rate-pairs achieved by the two protocols. Such a protocol would used 8 + 3 = 11

states.

4.3 CF-BC protocol

The CF-BC (Compute and Forward-Broadcast Channel) protocol uses States 9-12. Only

one relay is used in each state. States 9 and 10 are used the same way as in the CF-

CMAC protocol, i.e, A and B simultaneously transmit to R1 in State 9 and to R2 in

State 10. The relays R1 and R2 compute the sum of messages received by them in

states 9 and 10 and forward them to the end nodes in Broadcast States 11 and 12 re-

spectively. The nodes can decode the messages meant from them using their apriori

knowledge of the messages sent by them to the relays. This scheme is basically a time

sharing of two-way relaying with one relay. Rate constraints for State 9 and State 10

are same as those in CF-CMAC protocol. The rate constraints for states 11 and 12 are:

F 11
r1a
≤ λ11C(γa1),

F 11
r1b
≤ λ11C(γb1),

(4.24)

F 12
r2a
≤ λ12C(γa2),

F 12
r2b
≤ λ12C(γb2).

(4.25)

14 state protocol

A decode and forward protocol using all the 14 possible states of the diamond relay

channel was also considered. In this, the messages transmitted in each state are decoded

at the destination at the end of the state. It was found that using 14 states does not pro-
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vide any significant increase in rate region as compared to the Two-way MDF protocol

that uses only 8 states. This could be because of decode and forward not being the best

relaying scheme for states 13 and 14, which are 2x2 interference networks. Compute

and forward seems to be the best relaying scheme to achieve rates close capacity.

The achievable rate regions of all the three protocols are analysed and compared in

Chapter 7.
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CHAPTER 5

OUTER BOUND FOR THE CAPACITY REGION OF

THE GAUSSIAN DIAMOND RELAY CHANNEL

In this chapter, we derive outer bounds for the capacity region of the Gaussian Diamond

Relay Channel without direct links. The bound is derived using the half-duplex cut-set

bound for the capacity of a single flow in an arbitrary half-duplex relay network in

[21]. This outer bound is valid for all relaying schemes, because the derivation does not

involve any assumptions about the type of relaying used.

From [21], for any general network with M states and a fraction of time µi in state

i, any achievable rate R of information flow is bounded as

R ≤ min
S

M∑
i=1

µiI(XS;Y Sc|XSc

, i), (5.1)

where R is the rate from source to destination node with the source in a subset of nodes

S and the destination in Sc. The set S defines a cut that separates source and destination.

There are two flows in the two-way diamond channel, Ra from A to B and Rb form

B to A. The cutset bound is applied to the two flows cuts {a},{a, r1},{a, r2},{a, r1, r2}

for bounding Ra and the cuts {b},{b, r1},{b, r2},{b, r1, r2} for bounding Rb.

We need not consider all 14 states of Figure 3.2 for deriving the outer bound. 8 of

the states (3,4 and 7-12) that use only three of the four available nodes are actually a

part of either State 13 or State 14. So, we need to consider only 6 states for writing the

cut-set bound: 14, 13, 1, 2, 5, 6, with the fraction of time the network is in these states

being denoted as µ1, µ2, µ3, µ4, µ5, µ6, respectively.

Using the eight cuts mentioned above cuts, we obtain the following inequations:

Ra ≤ min {Ra1, Ra2, Ra3, Ra4},



where

Ra1 =µ1I(Xa;Y1, Y2|Xb) + µ3I(Xa;Y1|X2)

+ µ4I(Xa;Y2|X1),

Ra2 =µ1I(Xa;Y2|Xb) + µ2I(X1;Yb|X2)

+ µ4(I(Xa;Y2) + I(X1;Yb)),

Ra3 =µ1I(Xa;Y1|Xb) + µ2I(X2;Yb|X1)

+ µ3(I(Xa;Y1) + I(X2;Yb)),

Ra4 =µ2I(X1, X2;Yb) + µ3I(X2;Yb)

+ µ4I(X1;Yb),

and

Rb ≤ min {Rb1, Rb2, Rb3, Rb4},

where

Rb1 =µ1I(Xb;Y1, Y2|Xa) + µ5I(Xb;Y1|X2)

+ µ6I(Xb;Y2|X1),

Rb2 =µ1I(Xb;Y2|Xa) + µ2I(X1;Ya|X2)

+ µ6(I(Xb;Y2) + I(X1;Ya)),

Rb3 =µ1I(Xb;Y1|Xa) + µ2I(X2;Ya|X1)

+ µ5(I(Xb;Y1) + I(X2;Yb)),

Rb4 =µ2I(X1, X2;Ya) + µ5I(X2;Yba)

+ µ6I(X1;Ya).

The mutual information terms in the above equations can be further bounded as in [17].

For example, I(Xb;Y1, Y2|Xa) ≤ C(γb1+γb2) and I(X1, X2;Yb) ≤ C((
√
γb1+

√
γb2)2).
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This results in the following outer bound:

Ra ≤ µ1C(γa1 + γa2) + µ3C(γa1) + µ4C(γa2),

Ra ≤ µ1C(γa2) + µ2C(γb1) + µ4(C(γa2) + C(γb1)),

Ra ≤ µ1C(γa1) + µ2C(γb2) + µ3(C(γa1) + C(γb2)),

Ra ≤ µ2C((
√
γb1 +

√
γb2)2) + µ3C(γb2) + µ4C(γb1),

Rb ≤ µ1C(γb1 + γb2) + µ5C(γb1) + µ6C(γb2),

Rb ≤ µ1C(γb2) + µ2C(γa1) + µ6(C(γa1) + C(γb2)),

Rb ≤ µ1C(γb1) + µ2C(γa2) + µ5(C(γb1) + C(γa2)),

Rb ≤ µ2C((
√
γa1 +

√
γa2)2) + µ5C(γa2) + µ6C(γa1),

6∑
i=1

µi = 1, µi ≥ 0.

(5.2)

The boundary of the above capacity region can be computed by solving the follow-

ing linear program for each k ≥ 0:

max
Ra,{µi}

Ra,

subject to Ra = kRb and all the constraints in (5.2).
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CHAPTER 6

THE GAUSSIAN TWO-WAY DIAMOND CHANNEL

WITH DIRECT LINKS

6.1 The Gaussian Diamond channel with direct link be-

tween nodes

The diamond relay channel with direct link between the end nodes is shown in Figure

6.1. The system model is similar to Section 3.1, but for an additional link between A

and B. The SNR of the direct link is denoted as γab = h2abP
N

. This system has not been

considered in literature.

A

γa1

B

γb1

R1

R2

γa2 γb2

γab

Figure 6.1: Gaussian Diamond Channel with A-B Direct Link

6.1.1 Achievable rate region : The two-relay Co-MABC protocol

The system in Fig.6.1 can be seen as a simple extension of the two-way relay channel

with direct link, by adding another relay. The CF-CMAC and CF-BC protocols can

be used for this model also, but they do not use the direct link. The direct link can be

exploited to increase the time-efficiency and throughput of this system. The Cooperative

MABC (CoMABC) protocol proposed in [3] for the three-node two way relay case that

makes use of the direct link to increase the achievable rate region. This is a three state

protocol, in which the first state is a MAC, both end nodes A and B transmit to the



relay. The second state is a BC from the relay. If the link A to relay is better than the

one from B, then A may transmit more bits in the first state and B may receive at much

lower rate in the second state. This is compensated using a third co-operative state

in after A finishes decoding in the broadcast state. In the third state, A and the relay

together transmit to B. A may retransmit some information to help B in decoding, or

may choose to transmit altogether new information. The same scheme can be applied

twice, once at each relay in case of the gaussian diamond channel with direct link. We

call this the The Two-relay Co-MABC protocol.

Assuming that the links from A to the relays are better than those from B to the

relays, the achievable rate region is the closure of the set of all points (Ra, Rb) satisfying

following constraints:

Ra =Ra1 +Ra2, Rb = Ra1 +Ra2 where

Ra1 ≤ min{λ1R
∗
ar1 + λ3C(γab), λ2C(γb1) + λ3C(γb1 + γab)},

Rb1 ≤ min{λ1R
∗
br1, λ2C(γa1)},

Ra2 ≤ min{λ4R
∗
ar2 + λ6C(γab), λ5C(γb2) + λ6C(γb2 + γab)},

Rb2 ≤ min{λ4R
∗
br2, λ5C(γa2)},

R∗ar1 =

[
C(γa1 −

γb1
γa1 + γb1

)

]+

, R∗br1 =

[
C(γb1 −

γb1
γa1 + γb1

)

]+

,

R∗ar2 =

[
C(γa2 −

γb2
γa2 + γb2

)

]+

, R∗br2 =

[
C(γb2 −

γb2
γa2 + γb2

)

]+

.

(6.1)

where [x]+
∆
= max(x, 0).

6.1.2 Outer bound for capacity region

The states to be considered for writing the outer bound are shown in Figure 6.2. Proceeding

in the same way as in Chapter 5, the outer bound to the capacity region can be computed

by solving for each k ≥ 0:

max
Ra,{µi}

Ra,
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Figure 6.2: States in a Gaussian Diamond Relay network with direct link between nodes
A and B.

subject to Ra = kRb and the constraints

Ra ≤λ1C(γa1 + γa2) + λ3C(γab) + λ4C(γa2 + γab)

+ λ5C(γa1 + γab) + λ6C(γa1 + γa2 + γab),

Ra ≤λ1C(γa2) + λ2C(γb1) + λ3C((
√
γb1 +

√
γab)

2)

+ λ4(C(γa2) + C(γa2 + γab)) + λ5C(γab) + λ6C(γa2 + γab),

Ra ≤λ1C(γa1) + λ2C(γb2) + λ3C((
√
γb2 +

√
γab)

2)

+ λ4C(γab) + λ5(C(γa1) + C(γb2 + γab)) + λ6C(γa1 + γab),

Ra ≤λ2C((
√
γb1 +

√
γb2)2) + λ3C((

√
γb1 +

√
γb2 +

√
γab)

2)

+ λ4C((
√
γb1 +

√
γab)

2) + λ5C((
√
γb2 +

√
γab)

2) + λ6C(γab),

Rb ≤λ1C(γb1 + γb2) + λ7C(γab) + λ8C(γb2 + γab)

+ λ9C(γb1 + γab) + λ10C(γb1 + γb2 + γab),

Rb ≤λ1C(γb2) + λ2C(γa1) + λ7C((
√
γa1 +

√
γab)

2)

+ λ8(C(γb2) + C(γa1 + γab)) + λ9C(γab) + λ10C(γb2 + γab),

Rb ≤λ1C(γb1) + λ2C(γa2) + λ7C((
√
γa2 +

√
γab)

2)

+ λ8C(γab) + λ9(C(γb1) + C(γa2 + γab)) + λ10C(γb1 + γab),

Rb ≤λ2C((
√
γa1 +

√
γa2)2) + λ7C((

√
γa1 +

√
γa2 +

√
γab)

2)

+ λ8C((
√
γa1 +

√
γab)

2) + λ9C((
√
γa2 +

√
γab)

2) + λ10C(γab),

10∑
i=1

λi = 1, λi ≥ 0.
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6.2 The Gaussian Diamond channel with direct link be-

tween relays

A

γa1

B

γb1

R1

R2

γa2 γb2

γ12

Figure 6.3: Gaussian Diamond Channel with R1-R2 Direct Link.

Figure 6.3 shows the Gaussian Diamond channel with direct link between the relays.

The two relays are no longer non-interfering. This scenario has been considered in [14]

as the alternating two path relay channel and a Decode and Forward strategy has been

proposed for the same. When R1 is in transmit mode and R2 is in receive mode, R2 can

treat the information from R1 in two ways. One way is to consider it as interference,

and other is to consider it as a message to be decoded and forwarded to the destination

in the next state. The strategy proposed in [14] is a combination of these two schemes.

6.2.1 Achievable rate region using Alternating two path relay chan-

nels

An achievable rate region for this channel can be obtained using States 4, 6, 8 and 10

of Figure 6.4. Consider the flow from A to B. In State 4, A transmits to R2 while R1

transmits to B. R2 decodes the message from A, and in addition decodes the message

from R1 too, considering it as data to be forwarded to B in the next state. So R2 acts as

a relay for both A and R1. In state 6, A transmits new information to R1, R2 transmits

to B. The message transmitted by R2 will be a combination of the messages received

from A and R2 and the message to be sent to R1. States 8 and 10 act in the same way

for the flow in the opposite direction, Rb. The encoding and decoding schemes used are

Block Markov encoding and Sliding window decoding.

The achievable rate region is the closure of the set of all points (Ra, Rb) satisfying
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following constraints[14]:

Ra =Ra1 +Ra2, Rb = Ra1 +Ra2 where

Ra1 ≤ λ1C(α1γa2),

Ra1 ≤ λ1C
(

β1γb1
1 + (1− β1)γb1

)
+ λ2C((1− β2)γb2),

Ra2 ≤ λ2C(α2γa2),

Ra2 ≤ λ2C
(

β2γb2
1 + (1− β2)γb2

)
+ λ1C((1− β1)γb1),

Rb1 ≤ λ3C(α3γb2),

Rb1 ≤ λ3C
(

β3γa1

1 + (1− β3)γa1

)
+ λ4C((1− β4)γa2),

Rb2 ≤ λ4C(α4γb2),

Rb2 ≤ λ4C
(

β4γa2

1 + (1− β4)γa2

)
+ λ3C((1− β3)γa1).

(6.2)

6.2.2 Outer bound for capacity region

 

 

 

R1 

  (X) 

A B 

 R2 

R1 

  (IX) 

A B 

 R2 

R1 

  (VIII) 

A B 

 R2 

  (VII) 

R1 

A B 

 R2 

R1 

  (VI) 

A B 

 R2 

R1 

  (III) 

A B 

 R2 

R1 

  (V) 

A B 

 R2 

R1 

  (IV) 

A B 

 R2 

R1 

  (I) 

A B 

 R2 

R1 

  (II) 

A B 

 R2 

Figure 6.4: States in a Gaussian Diamond Relay network with direct link between re-
lays.

The 10 states of this network to be considered for obtaining the capacity upper

bound are shown in Figure 6.4. The outer bound to the capacity region can be computed

by solving:

max
Ra,{µi}

Ra,
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subject to Ra = kRb for each k ≥ 0 and the following constraints:

Ra ≤λ1C(γa1 + γa2) + λ3C(γa2) + λ4C(γa2) + λ5C(γa1) + λ6C(γa1),

Ra ≤λ1C(γa2) + λ2C(γb1) + λ3C((
√
γa2 +

√
γ12)2) + λ4(C(γa2) + C(γb1 + γ12))

+ λ7C(γb1 + γ12) + λ10C(γ12),

Ra ≤λ1C(γa1) + λ2C(γb2) + λ5C((
√
γa1 +

√
γ12)2) + λ6(C(γa1) + C(γb2 + γ12))

+ λ9C(γb2 + γ12) + λ8C(γ12),

Ra ≤λ2C((
√
γb1 +

√
γb2)2) + λ4C(γb1) + λ6C(γb2) + λ7C(γb1) + λ9C(γb2),

Rb ≤λ1C(γb1 + γb2) + λ3C(γb2) + λ5C(γb1) + λ8C(γb1) + λ10C(γb2),

Rb ≤λ1C(γb2) + λ2C(γa1) + λ3C((
√
γb2 +

√
γ12)2) + λ4(C(γ12) + λ7C(γa1 + γ12)

+ λ10(C(γb2) + C(γa1 + γ12)),

Rb ≤λ1C(γb1) + λ2C(γa2) + λ5C((
√
γb1 +

√
γ12)2) + λ6(C(γ12) + λ8(C(γb1) + C(γa2 + γ12))

+ λ9C(γa2 + γ12),

Rb ≤λ2C((
√
γa1 +

√
γa2)2) + λ7C(γa1) + λ8C(γa2) + λ9C(γa2) + λ10C(γa1).,

10∑
i=1

λi = 1, λi ≥ 0.
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CHAPTER 7

NUMERICAL RESULTS

In this section, we compare the analytical outer bound derived in Chapter 2 with the

outer bound of [10]. We also compare the achievable rate regions of the various proto-

cols proposed with the corresponding outer bounds.

7.1 Comparison of analytical and numerical outer bounds

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

R
a

R
b

 

 

A

B

C

+ Analytical Bound
   Numerical Bound

Figure 7.1: Comparison of analytical and numerical outer bounds: A:γ1 = 10dB,γ2 =
15dB,γ3 = 3dB, B:γ1 = 20dB,γ2 = 20dB,γ3 = 8dB, and C:γ1 =
30dB,γ2 = 35dB,γ3 = 13dB.

Figure 7.1 shows a comparison of the numerical and analytical outer bounds for

three channel conditions A: γ1 = 10dB,γ2 = 15dB,γ3 = 3dB, B: γ1 = 20dB,γ2 =

20dB,γ3 = 8dB, and C: γ1 = 30dB,γ2 = 35dB,γ3 = 13dB. The numerical outer bound

is obtained by solving the linear program in (2.1). The analytical bound is found to be

close to the numerical bound in all cases. In case B, where γ1 = γ2, the bounds match

for k = 1 as expected.



7.2 Comparison of rate regions

7.2.1 Without direct link

Comparison of achievable rate regions of the different protocols with outer bound is

shown for three different channel conditions: (1) γa1 = 15 dB, γb1 = 10 dB, γa2 = 10

dB, γb2 = 15 dB, (2) γa1 = 10 dB, γb1 = 12 dB, γa2 = 14 dB, γb2 = 16 dB, and (3)

γa1 = 30 dB, γb1 = 20 dB, γa2 = 3 dB, γb2 = 4 dB.
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Figure 7.2: Comparison of rate regions: γa1 = 15 dB, γb1 = 10 dB, γa2 = 10 dB,
γb2 = 15 dB.

Figure 7.2 shows the comparison of rate regions for channel condition 1. Here,

C(γa1)C(γb2) = C(γb1)C(γa2). According to [13], in this channel condition the one-

way MDF protocol achieves capacity. This can be seen from the two-way MDF region

meeting the outer bound on the axes(Ra = 0 and Rb = 0) where it corresponds to one-

way MDF. But away from the two axes, there is a significant gap from the outer bound.

The CF-BC protocol, using only one relay at a time has a smaller rate region than two-

way MDF. However, the CF-CMAC protocol is able to achieve rate-pairs outside the

rate region of the two-way MDF protocol. The convex combination of the CF-CMAC

and two-way MDF protocol rate regions is also shown (labelled “convex hull”). Any

point in this convex hull can be achieved by time-sharing the CF-CMAC and two-way

MDF protocols.

Figure 7.3 shows the comparison of rate regions for asymmetric channel condition
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Figure 7.3: Comparison of rate regions: γa1 = 10 dB, γb1 = 12 dB, γa2 = 14 dB,
γb2 = 16 dB.

2. In this scenario, both the CF-BC and CF-CMAC protocols achieve rate-pairs outside

the two-way MDF rate region.

Figure 7.4 shows the comparison of rate regions for channel condition 3. In this

scenario, the links to relay R1 are significantly better than the links to R2 in terms of

SNR. Therefore, this scenario is closer to a one-relay system. Both the CF-BC and

CF-CMAC protocols achieve rate-pairs outside the two-way MDF rate region and the

convex-hull is significantly close to the outer bound.
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Figure 7.4: Comparison of rate regions: γa1 = 30 dB, γb1 = 20 dB, γa2 = 3 dB, γb2 = 4
dB.
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In general, the one-way MDF protocol is close to capacity for the one-way diamond

channel. So by time-sharing, one can obtain rates close to capacity near the axes. How-

ever, when the desired two-way rates are nearly equal, it is evident that time-sharing of

one-way protocols is far from optimal. In such a case, mixing of the two flows is better,

as is evident from the proposed CF-CMAC and CF-BC protocols achieving much better

rates along the Ra = Rb line.

7.2.2 With direct link between A and B
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Figure 7.5: Comparison of rate regions: γa1 = 35 dB, γb1 = 30 dB, γa2 = 35 dB,
γb2 = 30 dB, γab = 15 dB.

Figure 7.5 shows the comparison of rate regions achieved using the two-relay Co-

MABC protocol and CF-CMAC with the outer bound for the case γa1 = 35 dB, γb1 =

30 dB, γa2 = 35 dB, γb2 = 30 dB, γab = 15 dB. The CoMABC protocol is proposed

to make best use of asymmetric channel conditions, hence it is observed to have a

larger rate region than CF-CMAC. Also, CoMABC is optimized to maximize sum rate.

Therefore, it performs well near the maximum sum rate points, while it is away from

the outer bound near the axes. This protocol uses only 4 of the 14 possible states of the

diamond channel. The other states can be exploited to increase the rate region near the

axes.
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Figure 7.6: Comparison of rate regions: γa1 = 10 dB, γb1 = 10 dB, γa2 = 10 dB,
γb2 = 10 dB, γ12 = 15 dB.
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Figure 7.7: Comparison of rate regions: γa1 = 20 dB, γb1 = 10 dB, γa2 = 10 dB,
γb2 = 20 dB, γ12 = 20 dB.

7.2.3 With direct link between R1 and R2

Figures 7.6, 7.7 show the comparison of rate regions achieved using the alternating

two path relay scheme(AR-DF) with the outer bound for two cases : 1)γa1 = 10 dB,

γb1 = 10 dB, γa2 = 10 dB, γb2 = 10 dB, γ12 = 15 dB and 2)γa1 = 20 dB, γb1 = 10

dB, γa2 = 10 dB, γb2 = 20 dB, γ12 = 20 dB. The CF-CMAC and convex hull are also

shown. Case 1 is shown to achieve the protocol specific upper bound in [14]. We see

that the AR-DF performs best at the axes, while compute and forward is still the best

strategy for achieving symmetric rates.
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7.3 Comparison of Outer bounds

In this section, we plot and compare the different outer bounds derived in Chapter 5.

The outer bounds are computed for two channel conditions: Case I: γa1 = 10 dB,

γb1 = 10 dB, γa2 = 10 dB, γb2 = 10 dB, γab = 7 dB, γ12 = 7 dB, Case II: γa1 = 14 dB,

γb1 = 5 dB, γa2 = 6 dB, γb2 = 12 dB, γab = 8 dB, γ12 = 8 dB.
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Figure 7.8: Outer bounds for capacity region of the gaussian diamond channel: γa1 =
10 dB, γb1 = 10 dB, γa2 = 10 dB, γb2 = 10 dB, γab = 7 dB, γ12 = 7 dB.
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Figure 7.9: Outer bounds for capacity region of the gaussian diamond channel: γa1 =
14 dB, γb1 = 5 dB, γa2 = 6 dB, γb2 = 12 dB, γb2 = 8 dB, γb2 = 8 dB.

Figure 7.8 shows the outer bounds for Case I. The link between the nodes A and

B provides a direct path of communication between them, so this outer bound is better

than the one without direct link in all channel conditions. The link between the relays
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does not provide any improvement for the symmetric channel case. Figure 7.9 shows

the outer bounds for Case II. The direct link between relays is observed to increase the

achievable region only when the three hop path (through theR1−R2 link) is better than

the other two in terms of SNR. In other cases, this bound is found to overlap with the

outer bound for the diamond channel without direct links.
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CHAPTER 8

CONCLUSION

8.1 Contribution of this thesis

The Gaussian two-way relay channel with direct link and the Gaussian two-way dia-

mond channel are studied. An analytical outer bound for the capacity region of the

gaussian two way relay channel has been derived. This analytical outer bound is found

to be close to the numerical outer bound in most cases, and it helps in analysing the

outer bound better.

Generalised outer bounds for the capacity region of the Gaussian Diamond Relay

channel with and without direct links have been derived. Existing protocols for commu-

nication through a diamond relay channel without direct link have been studied. Three

new protocols- 2-way MDF, CF-CMAC and CF-BC have also been proposed, that use

different subsets of states of a diamond relay network. The 2-way MDF protocol, which

is an extension of the existing MDF protocol for one-way relaying in a diamond chan-

nel, is found to achieve capacity for some channel conditions. The CF-CMAC protocol,

based on compute and forward technique is found to achieve rate rate pairs that the

2-way MDF cannot, in several channel conditions. CF-CMAC protocol is also found

to be better than CF-BC because of the Compound MAC state. The achievable rate

regions of all the protocols are compared with the outer bound. While the two-way

MDF protocol is found to be close to capacity near the axes, the compute and forward

protocols achieve better rates along the 45◦ line. A convex combination of the 2-way

MDF and CF-CMAC protocols is found to be close to the outer bound. Achievable rate

regions for the diamond channel with direct links have also been investigated.

8.2 Future Work

New protocols for communication over a diamond channel with direct links can be

investigated, since there is scope for improving the achievable rate regions obtained



in this thesis. Also, the 2X2 interference network of State 14 of Figure 3.2 can be

exploited to improve the achievable rate region. Inner and outer bounds for the full-

duplex diamond channel can also be investigated.
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