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ABSTRACT

KEYWORDS: Iterative receiver; Turbo Equalization; MAP algorithm ; RSMAP

An optimal receiver should detect the transmitted data directly from the received sym-

bols using the complex statistical relationship between the two. Such a receiver is not

feasible in practice. So we develop an iterative receiver based on turbo principle, which

achieves near optimal performance. Also inner decoder should pass soft information

to maximize the performance from the outer decoder. These soft output algorithms are

generally complex to implement. In this thesis we present low-complexity inner decod-

ing algorithms that produce soft information for two types of inner codes, trellis based

(for frequency-selective fading channels) and tree-based(MIMO channels in flat fad-

ing). Turbo-equalizer with low-complexity equalization algorithm is developed for ISI

channels. Finally the performance of the widely-linear low-complexity equalizer with

a widely-linear MMSE DFE prefilter to suppress co-channel interference from a single

interferer is investigated.

A reduced complexity, near MAP-optimal soft detector that outputs a posteriori

probabilities (APP’s) for multiple-input multiple-output (MIMO) systems in flat fading

channels is proposed. This detection algorithm is based on BCJR algorithm and also

uses ideas from reduced state sequence estimation (RSSE) and set partitioning. This al-

gorithm is shown to be near-optimal. Exact complexity of implementing this algorithm

is computed in terms of number of computations required. Realizing its high com-

plexity, we propose two approximate algorithms, one with only forward recursion and

soft decision failure prevention mechanism and the other based on the famous max log

approximation. We analyze these algorithms from complexity-performance trade-off

point of view.
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CHAPTER 1

Introduction

Reliable data transmission over wireless channels faces two main challenges:

• Wireless channel propagation effects (multi-path fading and time dispersion).

• Noise added due to radio (RF) front end at receiver.

The noise at the RF end of a receiver is usually modeled as white Gaussian noise.

Efficient channel coding schemes are designed to deal with this noise. The channel

encoder at the transmitter introduces necessary redundancy to protect the data from

errors. This is referred to as the outer code.

The effects due to a wireless channel are classified into large scale and small scale

fading effects. While large scale fading determines the power of signal received at the

receiver, it is the small scale fading that causes significant variation of signal strength

over a short period of time or distance. The channel in many typical environments

like Typical Urban (TU), Hilly Terrain (HT) environments has been well characterized

and all these environments offer a frequency-selective channel for data transmission.

This effect is very similar to the tapped delay line model that represents channel coding

schemes like convolutional codes. Hence the effect of channel on transmitted sym-

bols is referred to as an inner code. Many communication systems can be viewed as a

concatenation of inner code with an outer code (usually channel code).

An optimal receiver detects the transmitted data bits, using the complex statistical

relationship between transmitted data bits and the received symbols, after being sub-

jected to both inner and outer codes. Implementing such a receiver is very complex

in practice. Hence most practical receivers today separatethe detection process at re-

ceiver into two separate sequential tasks: first decode the inner code and then decode

the outer code. This approach is suboptimal, since we are separately implementing

two inherently dependent tasks. Clearly, there is scope forbetter performance, if we



can improve the receiver architecture, by exploiting the dependencies between the two

decoding steps.

The idea of an iterative receiver, based on theturbo principle , is proposed to

improve the performance. Turbo Receiver is an iterative receiver architecture, which

achieves the performance of an optimal Maximum A Posteriori(MAP) detector via it-

erative message passing between a soft-input soft-output (SISO) inner decoder and a

SISO outer decoder. A general framework for implementing the turbo receiver is devel-

oped in this thesis. This general frame work is developed using the specific example of

convolutional coded data transmitted over a frequency selective channel.

Next we focus on the inner code decoder and try to develop general low-complexity,

near-optimal decoding algorithms for the inner code. Specifically, we focus on two

classes of communication systems, one class where the innercode can be depicted on

a trellis and the other class where it is depicted on a tree. Equalization of inter-symbol

interference (ISI) channels belong to the first class, whereas Multiple Input Multiple

Output (MIMO) systems in flat fading channels belong to the later category. We de-

velop low complexity soft equalization algorithms for frequency-selective channels.

Next we apply the low-complexity iterative receiver developed for frequency selective

channels to suppress interference in an interference limited scenario. Single Antenna

Interference Cancellation (SAIC) algorithms in conjunction with iterative receivers al-

ready developed, are used to suppress the interference froma co-channel interferer.

Specifically, we are interested in the case of a VAMOS (Voice services over Adaptive

Multi-user channels on One Slot) with a GMSK interferer and EDGE (8-PSK) with

GMSK interferer scenarios.

For MIMO systems, we also develop low complexity forward only algorithms that

achieve excellent complexity-performance trade-off. Exact number of computations

necessary for implementing this algorithm for a general MIMO system is also esti-

mated.

Simulations results of our proposed receiver are presentedin these two cases.

The organization of thesis is as follows
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Chapter 2 introduces the need for turbo equalization, using a frequency-selective fad-

ing channel as an example. The general framework for a turbo-equalizer is pre-

sented in this chapter. The gains from turbo equalization applied to coded BPSK

modulation in a frequency selective channel are presented.

Chapter 3 focuses on low-complexity equalization algorithms for frequency-selective

channels. Hard and soft equalization algorithms are presented in this chapter. Per-

formance of these algorithms for a coded 8-PSK modulated system are presented.

Also, the performance of the turbo equalizer in conjunctionwith the inner-code

decoder developed are presented.

Chapter 4 focuses on interference suppression receivers, by combining SAIC filter

with iterative receiver developed for frequency selectivechannels. Exact perfor-

mance of this receiver for specific cases of VAMOS with GMSK interference and

EDGE with GMSK interference are presented.

Chapter 5 focuses on low-complexity soft-detection algorithms for MIMO systems in

flat fading channels. A forward-only soft-detection algorithm that gives excellent

complexity-performance trade-off is presented. Also explicit number of compu-

tations required to implement all the variations of the basic algorithm presented

are calculated.

Chapter 6 contains concluding remarks on this work. Also possible avenues for future

work are identified.

3



CHAPTER 2

Turbo Equalization

2.1 Conventional Receiver

A typical communication system consists of a transmitter, achannel and a receiver. The

transmitter usually contains many blocks, which convert the binary data to an analog

signal to transmit over the channel. The receiver then processes the received signal to

detect the transmitted binary data. A typical communication system is shown in Fig. 2.1

below.

Encoder Channel

DecoderEqualizer
Demapper Deinterleaver

Interleaver
Mapper

(Modulator)

a b x y

y

x̂

â

ĉ b̂

c

Figure 2.1: Typical Block Diagram of a Communication System

The functions of each block are explained below:

• Encoder

– Introduces redundancy in dataa by using error control coding.

– Error control coding protects the data from additive noise.

• Interleaver

– To insulate informationb from bursty noise.

• Mapper/Modulator



– Maps binary information bitsc to complex symbolsx

• Complex symbols are then passed through an A/D converter, upconverted to gen-

erate a bandpass signal and transmitted through the channel.

• The receiver then filters out the out-of-band noise and downconverts the received

signal to baseband.

• Equalizer

– It attempts to remove the ISI (inter-symbol interference) to recover the trans-

mitted symbols.

– It could either pass hard estimates or soft information about the transmitted

symbols.

• Demapper

– Maps complex transmitted symbolsx̂ to binary information bitŝc

• Deinterleaver

– Performs a transformation that undoes the one done by the interleaver.

• Decoder

– This block estimates the transmitted data bits,â from the received code bits

b̂.

2.1.1 Practical Receiver

The optimal receiver, which achieves the minimum probability of bit error, is

the one that maximizes the a posteriori probability (APP) given the observed

sequencey, i.e,

â [k] =
argmax

a ∈ {0, 1}
P (a [k] = a|y) (2.1)

Such an algorithm is called the ‘Maximum A Posteriori (MAP) Algorithm’.

5



Optimal Detector
y[k] â[k]

Figure 2.2: Optimal Receiver

P (a [k] = a|y) =
∑

∀a:a[k]=a

P (a|y)

=
∑

∀a:a[k]=a

P (y|a)P (a)

P (y)
(2.2)

Computing theP (y|a) is extremely difficult, since the received symbols depend

on entire vector of transmitted data bits,a = (a[1], a[2], . . . , a[K]). Implementing

such a receiver requires the knowledge of complex statistical relationship between

observations and transmitted bits, which is practically infeasible.

Hence most practical receivers today split the process of detection of data into

two separate tasks:

– Equalization: It processes the received signal to take careof ISI introduced

by the channel. It is further classified as:

(a) Algorithmic Classification

· Trellis Based Equalizer - Examples include MAP symbol detection

[2], [15] and ML sequence detection [9].

· Linear Filtering Based Equalizers - Examples include zero forcing

equalizer and LMMSE.

(b) Based on Output

· Hard Output Equalizers - They output estimated complex symbols.

· Soft Output Equalizers - They output APP’s or Log-likelihood Ra-

tios (LLR’s) for trellis based equalizers and estimation error, ek =

x̂k − xk for linear filter based equalizers.

– Decoding: It recovers the transmitted data bits from equalized symbols,

taking care of additive noise at receiver.

6



The easiest way of implementing separate equalization and decoding is for the

equalizer to pass hard estimates of the transmitted symbols, which are then mapped

to corresponding code bits. These estimates are then passedto decoder to estimate the

data bits. Passing hard estimates between equalizer and decoder destroys some infor-

mation on how likely the estimated symbol might have been. This additional ‘soft’

information on transmitted bit estimates, in terms of probability of each code bit taking

the value0 or 1, can be exploited by the channel decoding algorithm. In factmany prac-

tical receivers today implement this. Our simulations results indicate that passing soft

information will provide gains of about2 dB over passing hard information between

equalizer and decoder for data transmission in frequency selective channels.

It is very important to note that equalization and decoding are inherently dependent

tasks. Performance degradation occurs due to separation ofthese dependent tasks. Main

motivation behind Turbo Equalization is to enable feasibleapproaches to jointly solving

the equalization and decoding tasks.

2.2 Turbo Equalization

Turbo Equalization is an iterative equalization and decoding technique that approaches

the performance of a MAP detector via iterative message passing between Soft-Input

Soft-Output (SISO) equalizer and SISO decoder.

This work is based on the ideas developed in turbo codes. The remarkable perfor-

mance of turbo codes suggests that performance will be improved if soft information is

not restricted to flow in only one direction. Hence we create afeedback loop between

the equalizer and the decoder. The equalizer computes soft information on transmitted

symbols from the received symbols,y, which is mapped to soft information on coded

bits. This is fed as input to the decoder. The channel decoderin addition to estimating

the data bitsa also estimates information about the coded bitsb. This new informa-

tion is the likelihood of certain code bits being transmitted, which is not derived from

already known information which was input to the decoder. This soft information can

be mapped back to information on transmitted symbols, whichis given as APP’s to the

equalizer. The equalizer then utilizes this a priori information and the received complex

7



symbols to output information on transmitted symbols. Thiscreates a feedback loop

between the equalizer and decoder, in which each block communicates its belief on

each bit/symbol taking a particular value. This process is called as ‘message passing’

or ‘belief propagation’. This process is continued till a stopping criterion (either the

number of iterations or achieving certain probability of error is reached).

Since we are interested in trellis-based equalization algorithms (they outperform

linear-filter-based algorithms, but are more complex), soft information is usually rep-

resented by a posteriori probabilities. This soft information, when dealing with binary

variables, is more conveniently represented by ‘Log Likelihood Ratio (LLR)’ rather

than by probabilities. The LLR for a binary random variablea is defined as

L(a) = ln

[P(a = 0)

P(a = 1)

]

Conditional LLR of each data bita [k] is given by

L(a [k] | y) = ln

[P(a [k] = 0 | y)
P(a [k] = 1 | y)

]

From (2.2), we have

L(a [k] | y) = ln

∑

∀a:a[k]=0

P (y|a)
K∏

i=1

P (ai)

∑

∀a:a[k]=1

P (y|a)
K∏

i=1

P (ai)

= ln

∑

∀a:a[k]=0

P (y|a)
K∏

i=1:i 6=k

P (ai)

∑

∀a:a[k]=1

P (y|a)
K∏

i=1:i 6=k

P (ai)

︸ ︷︷ ︸

+L(a [k])

= Lext (a [k] |y) + L(a [k]) (2.3)

The termLext (a [k] |y) is called the ‘Extrinsic LLR’ andL(a [k]) is called the ‘In-

trinsic LLR’ of a [k] given the received sequencey.

Simple and efficient algorithms for equalization and decoding assume soft informa-

tion about each bit (or symbol) is independent of the information about other bits (or

8
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+

Deinterleaver

Prior Code Bit

Prior Symbol 

Received Symbols

Decoder

EqualizerA Posteriori

A Posteriori

Probabilities

Probabilities

Probabilities
Probabilities

Intrinsic Symbol Probabilities

Intrinsic Bit Probabilities

Interleaver

−

−

Figure 2.3: Block Diagram of a Turbo Equalizer

symbols). However when the equalizer (or decoder) outputs soft information about a

particular bit using the input they received from decoder (or equalizer) about the same

bit, then this independence between soft a priori information and observations is lost.

It creates a feedback loop of length2. In fact passing intrinsic information (included in

L(a [k] | y)) will lead to faster convergence to a local optimum rather than global op-

timum. Hence when feeding soft information between equalizer and decoder, only the

‘Extrinsic information,Lext (a [k] |y)’ should be passed between equalizer and decoder.

The Fig. 2.3 represents the entire turbo equalization process.

The notationL (b|p) represents the LLR’s at the output of decoder, which are fed

to equalizer after removing the intrinsic LLR’s,Lext (b|y). The LLR’sLext (c|y) are

deinterleaved to getLext (b|y). The LLR’sL (c|y) are the outputs from the equalizer

which takes received observationsy and the prior LLR’sLext (c|p), which are obtained

by interleavingLext (b|p), as inputs.

All these operations are summarized below[15].

Input

9



• Channel Coefficientsh[l] for l = 0, 1, ......, L

• Observation Sequencey

• A sequence of LLRsLext(c | p) initialized to0.

• A predetermined number of iterationsl.

Recursively compute forl iterations

• L(c | y) = Forward/Backward (Lext(c | p) ).

• Lext(c | y) = L(c | y)− Lext(c | p)

• L(b | y) = Forward/Backward (Lext(b | p) ).

• Lext(b | y) = L(b | y)− Lext(b | p) ‘

Output

• Compute data bit estimatesâ [k] from L(a [k] | y)

It is important to note that the above framework developed for Turbo Equalization

is independent of the specific algorithm used for equalization and channel decoding.

This framework is suited for all equalization algorithms that take in complex received

observations and also prior probabilities of the transmitted symbols and output LLR’s

of the coded bits. Similarly it is suited for all channel decoding algorithms that take in

prior LLR’s of coded bits and outputs the LLR’s of data bits and the coded bits given the

input prior probability vector for the coded bits. Also notethat the framework developed

for turbo equalization is independent of the modulation used. This framework can be

used for a general communication system, with the equalizerand the decoder being

replaced with an inner and outer code decoder, respectively.

We now study the performance of Turbo Equalizer for the communication system

described in the following section.

2.3 System Model

The objective of the communication system is to transmit a vector of binary data,

a = (a[1, a[2], . . . a[K]) and decode the information reliably at the receiver. The trans-

mitter protects the data by introducing redundancy via error correcting codes of rate
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R = K/N . Without loss of generality, a convolutional rate1
2

code, whose generator

polynomial is

(1 +D2, 1 +D +D2) is used. The output code bits for inputa [k] are given by

b [2k − 1] = a [k]⊕ a [k − 2]

b [2k] = a [k]⊕ a [k − 1]⊕ a [k − 2] (2.4)

These code bits,b = (b [1] , b [2] , . . . , b [N ]) are further interleaved using a block in-

terleaver, which writes data into the interleaver matrix bycolumns and reads out along

the rows of the matrix. These interleaved coded bits,c = (c [1] , c [2] , . . . , c [N ]) are

then mapped to a complex symbols vector,x = (x [1] , x [2] , . . . , x [N ]) drawn from a

BPSK constellation. These symbols are transmitted over a frequency-selective channel

with (L+ 1) taps with impulse response,h = (h [0] , h [1] , · · · , h [L]). In complex

baseband representation, the received symbolsy are given by

y [k] =

l=L∑

l=0

h [l] x [k − l] + n [k] , k = 1, 2, · · ·N. (2.5)

wheren [k] is additive white Gaussian noise with zero mean and varianceσ2.

The receiver processes the received data to estimate transmitted data. We are in-

terested in trellis-based equalization algorithms. Specifically we will study the perfor-

mance of a MAP symbol detector that applies eqn. (2.1), ignoring the effect of error

control coding. This equalizer is optimal in the sense of minimizing the symbol er-

ror probability. We also implement soft (hard) convolutional decoders based on MAP

principle (Viterbi algorithm based approach [10]).

2.4 Maximum A Posteriori Symbol Detector Algorithm

For a channel with an impulse response of length(L+ 1) taps, there areL delay ele-

ments. For a binary input alphabet{+1,−1}, this implies the system can be in anyone

of the2L possible states. LetS = {r1, r2, . . . , r2L} represent the set of possible states.

Let the state of the channel at timek be represented by a random variablesk ∈ S. Since
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we are interested in binary modulation schemes, given a present statesk, there are two

distinct, unique possible future statessk+1 corresponding to input being+1 or−1. This

system can be represented on a trellis, which gives all the possible future states from

each given present state at every stage.

Without loss of generality, let us consider a3-tap channel, i.e,

h = [h [0] , h [1] , h [2]]. The effect of channel and white Gaussian noise at receiver given

by eqn. (2.5) is also represented by a tapped delay line model(Fig. 2.4) below. The

h[0] h[1] h[2]

x[k]

n[k]

y[k]

Figure 2.4: tapped delay line model for a 3-tap ISI channel

set of possible states isS = {r0, r1, r2, r3}. They are also represented by{0, 1, 2, 3}.

These states at timek are also represented by the ordered pairs

{(0, 0) , (0, 1) , (1, 0) , (1, 1)} respectively, where the first entry corresponds to the mem-

ory of channelx [k − 1] at time(k − 1) and the second entry corresponds to memory

x [k − 2] at time(k − 2).The trellis for this channel is given in Fig. 2.5.

The setB = {(0, 0), (0, 2), (1, 0), (1, 2), (2, 1), (2, 3), (3, 1), (3, 3)} is the set of all

possible transitions in this trellis. A branch in this trellis is denoted by ordered pair

(i, j, xi,j , vi,j), such that statesk+1 = rj is reached from statesk = ri at timek with an

inputx[k] = xi,j and outputv [k] = vi,j , wherev [k] =
l=L∑

l=0

h [l] x [k − l].

Now let us compute the APP’sP (x [k] = x|y). Let us assume the input random vari-

ablesx [k] are IID, i.e,P (x) =
k=N∏

k=1

P (x [k]). Now let us compute the probability

that transmitted input sequence has a branch(i, j, xi,j , vi,j) in the subset state trellis at

time k, i.e, P (sk+1 = rj, sk = ri/y). This is computed efficiently based on the for-

ward/backward algorithm [15], [2].

We know

P (sk+1 = rj , sk = ri|y) = P (sk+1 = rj, sk = ri,y) /P (y) (2.6)
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x[k] =
1

r0 = (0, 0)

r1 = (0, 1)

r2 = (1, 0)

r3 = (1, 1)

sk

r0 = (0, 0)

r1 = (0, 1)

r2 = (1, 0)

r3 = (1, 1)

(0, 0) (0, 0)

(0, 1)

(1, 0)

(1, 1)(1, 1)

(1, 0)

(0, 1)

sk+3sk+2sk+1

x[k] = 0

x[k] = 0

x[k] = 1

x[k]
= 0

x
[k
] =

0

x[k] = 1

x[k] = 1

x[k], y[k] x[k + 1], y[k + 1] x[k + 2], y[k + 2]

Figure 2.5:4-state trellis representation for a3-tap channel with binary modulation

Applying the chain rule, i.e,P (a, b) = P (a)P (b|a) to P (sk+1 = rj, sk = ri,y), we

have

P (sk+1, sk,y)

= P (sk+1, sk, (y [1] , · · · , y [k − 1]) , y [k] , (y [k + 1] , · · · , y [N ]))

= P (sk, y [1] , · · · , y [k − 1])
︸ ︷︷ ︸

αk(sk)

· P (sk+1, y [k] |sk)
︸ ︷︷ ︸

γk(sk,sk+1)

· P (y [k + 1] , · · · , y [N ] |sk+1)
︸ ︷︷ ︸

βk+1(sk+1)

(2.7)

The forward metric of states at stagek, αk (s), is obtained by the following recur-

sion,

αk (s) =
∑

∀s′∈S

αk−1 (s
′) · γk−1 (s

′, s) , k = 1, 2, . . . , K − 1 (2.8)

The initial conditionα0 (s) depends on the state of channel att = 0. If the starting

state of the trellis is known, then the forward metric for that state is1, since the trellis

will start from that state with a probability of1 and0 for other states. If all states are

possible initially, thenα0 (s) = 1, ∀s ∈ S

Similarly,βk (s) the backward metric of states at stagek is obtained by the follow-
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ing recursion,

βk (s) =
∑

∀s′∈S

βk+1 (s
′) · γk (s, s′) , k = 1, 2, . . . , K − 1 (2.9)

Similarly the initial conditionsβK (s) are determined by the knowledge of state of sys-

tem at the end of current frame.

The transition probability from statesk = ri to statesk+1 = rj given byγk (ri, rj)

is 0 if the ordered pair(i, j) /∈ B. The transition probability∀ (i, j) ∈ B is given by

γk (ri, rj) =







P (x [k] = xi.j) · P (y [k] |v [k] = vi,j) if (i, j) ∈ B
0 if (i, j) /∈ B

(2.10)

The termP (x [k] = xi.j) is the prior probability of each transmitted symbol, which

is given as input to the equalizer. The other term in the product P (y [k] |v [k] = vi,j) is

easily computed by observing from eqn. (2.5) thaty [k] = v [k] + n [k] and hence

givenv [k] , y [k] ∼ N
(
v [k] , σ2

)

.

P (y [k] |v [k]) = 1√
2πσ2

e−
(y[k]−v[k])2

2σ2 (2.11)

Now, the APP’s forkth transmitted symbol,x [k] taking a value from the setx ∈ {0, 1}
is given by

P (x [k] = x|y) =
∑

∀(i,j)∈B:xi,j=x

P (sk+1 = rj , sk = ri|y)

=
∑

∀(i,j)∈B:xi,j=x

P (sk+1 = rj , sk = ri,y) /P (y) (from eqn. (2.6))

=
∑

∀(i,j)∈B:xi,j=x

αk (ri) γk (ri, rj) βk+1 (rj) (from eqn. (2.7)) (2.12)

Note thatP (y) is taken care of during normalization. The transmitted symbolsx are

mapped to the coded bit vectorc by the relationc = (1− x) /2.
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The LLR’s of the code bits which will be passed to the deinterleaver are given by

L (c [k] |y) = ln
P(c [k] = 0 | y)
P(c [k] = 1 | y)

=

∑

∀(i,j)∈B:xi,j=+1

αk (ri) γk (ri, rj)βk+1 (rj)

∑

∀(i,j)∈B:xi,j=−1

αk (ri) γk (ri, rj)βk+1 (rj)
(from eqn. (2.12))(2.13)

To implement this algorithm, first the transition probabilities have to computed for

each stage using eqns. (2.10), (2.11). Then using eqn. (2.8)the forward metrics for

all states, assuming some initial conditions have to be computed. The trellis has to be

traced backwards again to compute backward metrics using eqn. (2.9). These metrics

have to be substituted into eqn. (2.13) to compute the LLR foreach code bit. All

these computations on the trellis can be efficiently described by a sequence of matrix

operations [15].

2.4.1 Forward/Backward Algorithm using matrix operations

The number of states in the trellis is|S|. The number of stages in this trellis areN . Let

us define2-D matricesPk for k = 1, 2, · · · , N of size|S| × |S|, where

{Pk}i,j = γk (ri, rj) , i, j = 1, 2, · · · , |S| andk = 1, 2, · · · , N

Let us define two matricesA (x) for x ∈ {+1,−1} of size|S| × |S| such that

[A (x)]i,j =







1, if (i, j) ∈ B such thatxi,j = x

0, otherwise
(2.14)

Let Bk (x) for x ∈ {0, 1}, k = 1, 2, · · · , N denote a matrix of size|S| × |S|. The

matrixBk (x), obtained by the Hadamard product of two matricesPk andA (x), is given

by

Bk (x) = Pk ◦ A (x) (2.15)

Let us also define2 column vectorsfk andbk of length|S| for k = 1, 2, . . . , N . They

correspond to forward and backward metrics. Without loss ofgenerality let us initialize
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f0 = 1 andbN = 1 (this implies trellis could in any one of the|S| possible states both

in the beginning and at the end).

The MAP symbol detection algorithm is summarized in Table 2.1 [15].

Forward/Backward Algorithm for Equalizer
Input
MatricesPk andBk (x) for k = 1, 2, · · · , N,

column vectorsfk andbk with some initial conditions(f0 andbN )
Recursively Compute
fk = f ′k−1Pk−1, k = 1, 2, · · · , N

bk = Pkbk+1, k = 1, 2, · · · , N
Output
Fork = 1, 2, · · · , N the LLR of code bits is given by

L (ck|y) = ln
f ′k Bk(+1)bk+1

f ′k Bk(−1)bk+1

Table 2.1: Forward/Backward Algorithm for Equalization

2.5 MAP Convolutional Decoder

The MAP equalizer passes the LLR’s computed using eqn. (2.13) to deinterleaver,

which deinterleaves and outputs the LLR’s of coded bitsL (b [k] |y). These LLR’s are

then converted to prior bit probabilities using

P (b [k] = 0|y) =
1

1 + exp{−L (b [k] |y)} (2.16)

P (b [k] = 1|y) = 1−P (b [k] = 0|y)

The goal of decoder is to decode the convolutional code with input being

P = (P (b [1] = 0|y) ,P (b [2] = 0|y) , · · · ,P (b [N ] = 0|y)) (2.17)

We are interested in a MAP decoder that outputs the LLR’s of data bitsL (ak|P) ,

k = 1, 2, · · · , K and also of the code bitsL (bk|P) , k = 1, 2, · · · , N . We know that

convolutional code can be represented on a tapped delay linemodel similar to that of

an ISI channel, and hence an algorithm very similar to the forward/backward algorithm
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used for equalization can be used for decoding. Using same notation as in previous sec-

tion, for the convolutional code given by eqn. (2.4) and the frequency-selective channel

represented by the tapped delay model in Fig. 2.4, the differences in both algorithms

are

• Each branch in the trellis for convolutional code at stagek is represented by

(i, j, ai,j, b1,i,j , b2,i,j), where the inputak = ai,j resulted in a transition from state

sk = ri to statesk+1 = rj and the two output code bitsb2k−1 = b1,i,j andb2k =

b2,i,j.

• The expression eqn. (2.10) has to be modified as

γk (ri, rj) =






P (ak = ai,j)P (b2k−1 = b1,i,j |y)P (b2k = b2,i,j |y) , if (i, j) ∈ B
0, if (i, j) /∈ B

(2.18)

Computing forward and backward metrics is similar for both decoding and equalization.

The exact equations are

αk (s) =
∑

∀s′∈S

αk−1 (s
′) · γk−1 (s

′, s) , k = 1, 2, . . . , K − 1 (2.19)

βk (s) =
∑

∀s′∈S

βk+1 (s
′) · γk (s, s′) , k = 1, 2, . . . , K − 1 (2.20)

Initial knowledge about the frame structure determine theα0 (s) andβN (s) , ∀s ∈ S.

Using very similar expressions, the LLR’s for data bits are computed using

L (a [k] |P) = ln
P(a [k] = 0 | P)

P(a [k] = 1 | P)

=

∑

∀(i,j)∈B:ai,j=0

αk (ri) γk (ri, rj) βk+1 (rj)

∑

∀(i,j)∈B:ai,j=1

αk (ri) γk (ri, rj) βk+1 (rj)
(2.21)
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Similarly LLR’s of coded bits, which are fed back to equalizer are computed using

L (b [2k − 1] |P) =

∑

∀(i,j)∈B:b1,i,j=0

αk (ri) γk (ri, rj) βk+1 (rj)

∑

∀(i,j)∈B:b1,i,j=1

αk (ri) γk (ri, rj) βk+1 (rj)

L (b [2k] |P) =

∑

∀(i,j)∈B:b2,i,j=0

αk (ri) γk (ri, rj) βk+1 (rj)

∑

∀(i,j)∈B:b2,i,j=1

αk (ri) γk (ri, rj) βk+1 (rj)

(2.22)

2.5.1 Matrix Representation

To compute the LLR’s of data bits, matrixA (x) , x ∈ {0, 1} is defined as

[A (x)]i,j =







1, if (i, j) ∈ B such thatai,j = x

0, otherwise
(2.23)

We use same definitions introduced in Section 2.4.1 for the matricesPk andB (x)k , x ∈
{0, 1}, k = 1, 2, · · · , K and the two column vectorsfk andbk, k = 1, 2, · · · , K. The

algorithm is summarized in the Table 2.2 [15].

Forward/Backward Algorithm for Decoder
Input
MatricesPk andB (x)k for k = 1, 2, · · · , K,

column vectorsfk andbk with some initial conditions(f0 andbK)
Recursively Compute
fk = f ′k−1Pk−1, k = 1, 2, · · · , K

bk = Pkbk+1, k = 1, 2, · · · , K
Output
Fork = 1, 2, · · · , K the LLR of data bits is given by

L (ak|P) = ln
f ′k Bk(0)bk+1

f ′k Bk(1)bk+1

Table 2.2: Forward/Backward Algorithm to compute LLR’s of data bits
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To compute LLR’s of odd indexed codebits, define the matrixA (x) , x ∈ {0, 1}

[A (x)]i,j =







1, if (i, j) ∈ B such thatb1,i,j = x

0, otherwise
(2.24)

and to find the LLR’s of even indexed code bits, define the matrix A (x) , x ∈ {0, 1}

[A (x)]i,j =







1, if (i, j) ∈ B such thatb2,i,j = x

0, otherwise
(2.25)

Follow the procedure as outlined in Table 2.2, to compute LLR’s of code bits.

2.6 Simulation Results

We simulated a communication system as outlined in Section 2.3 to study the perfor-

mance of turbo-equalization. The input to the rateR = 1/2 convolutional encoder is

a frame consisting1000 binary data bits. A block interleaver with16 rows is used to

interleave the coded bits. BPSK modulation is used and the channel is a3-tap channel

h = [0.407 0.815 0.407]. The performance of this system is presented below.

Fig. 2.6 demonstrates the gain in performance by passing soft information between

equalizer and channel decoder over passing hard information. We used a Viterbi al-

gorithm based hard-output equalizer followed by a convolutional decoder that accepts

hard inputs to obtain the red (top) curve. The green (bottom)curve is obtained by using

a MAP symbol detector as described in Section 2.4 followed bya MAP convolutional

decoder (Section 2.5). We can observe a gain of about2 dB from soft message passing.

Fig. 2.7 demonstrates the gains from turbo-equalization. We can observe a gain

of about1.75 dB between0th and1st iterations, about0.50 dB between1st and2nd

iterations. The performance saturate after6 iterations, resulting in a total gain of about

2.75 dB compared to just soft message passing. Compared to hard message passing

between equalizer and decoder, receivers employing turbo equalization provide a gain

of about4.75 dB.
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CHAPTER 3

Equalization for Higher Order Modulation

In Section 2.4 we discussed trellis-based MAP equalizationalgorithm for binary mod-

ulation schemes. The same algorithm could be theoreticallyextended for higher order

modulation (HOM) schemes. However the complexity associated with these algorithms

is prohibitively high for HOM. Consider a HOM whose signal set hasM points. Even

for a(L+ 1)-tap frequency-selective channel, the total number of possible states isML.

This number is extremely large even for typical systems likeEDGE in TU channels (in

this case it is82) and for HT channels (it is85). Hence implementing a MAP/ML based

equalization algorithms is difficult in these cases. There is a need for low complexity

algorithms that achieve near optimal performance. These low complexity algorithms

are further classified as hard and soft equalization algorithms.

3.1 Hard Output Equalization Algorithm for HOM

The initial focus of work on reducing the complexity of MLSE was to shorten the chan-

nel impulse response. Various techniques like use of linearequalizer [25], decision

feedback equalizer (DFE)[18] were proposed to truncate thechannel response. Ref. [7]

introduced what is today known as decision feedback sequence estimator (DFSE). All

these techniques don’t offer any way to mitigate the higher complexity due to constel-

lation size. Refs. [11] and [6] first proved that performanceof MLSE could be achieved

by following a lower number of more likely paths. In contrastwith various other ad hoc

methods in literature, [8] proposed reduced state sequenceestimator (RSSE), the first

structured way of reducing the complexity, but still achieving near ML performance.

This is also applicable to both channels with large memory and higher order modula-

tion schemes. RSSE is based on constructing a trellis with reduced number of states.

This trellis is obtained by applying Ungerboeck set partitioning principles [28] on the

actual trellis for the system. In the following subsection,we describe the RSSE in detail.



3.1.1 Reduced State Sequence Estimation

Consider the same system model as given by eqn. (2.5). TheM-ary modulated symbols

(constellationχ) are transmitted over a frequency-selective channel with(L+ 1) taps

whose impulse response,h = [h [0] , h [1] , · · · , h [L]]. The received symbols are given

by

y [k] =
l=L∑

l=0

h [l] x [k − l] + n [k] , k = 1, 2, · · ·N. (3.1)

wheren [k] is additive white Gaussian noise with zero mean and varianceσ2.

In the full trellis representation of this system, each state of trellis is given bysk =

[x[k − 1] x[k − 2] · · · x[k − L]]. Since each element in thisL-length vector can take

M possible values, we haveML possible states in the ML trellis. Also from each statesk,

M transitions are possible each corresponding to each input symbol. ThusM branches

leave from each state in the ML trellis.

In RSSE, for each elementxk−l, we partition the signal set,χ into Jl two dimen-

sional subsets, whereJl ∈ [1,M]. This two dimensional set partitioning for thelth

memory tap is denoted byΩ(l). The elementxj under partitionΩ(l) is an element of

the subset with index denoted byaj(l), which takes a value between0 andJl − 1. The

set partitioning is constrained by:

• The numbersJl are non increasing, i.e.,J1 ≥ J2 ≥ · · · ≥ JL.

• The two dimensional partition corresponding tolth tap is obtained by a further

partition of the subsets corresponding the two dimensionalpartition for(l + 1)th

tap, for eachl between 1 andL− 1.

According to this notation, the statesk in the full MLSE trellis corresponds to the subset

state given by

tk = [ak−1(1) ak−2(2) · · · ak−L(L)]

The above two conditions imply that we can uniquely determine the next subset state,

provided we know the present subset state and the subset to which input symbol be-

longs. Therefore the subset statestl determine a proper trellis, referred to as ‘subset

22



state trellis’. The total number of states in this subset trellis is given by
L∏

k=1

Jk.

Note that, unlike in a full trellis where the input can be any of theM possible values,

in the subset trellis input for next stage will definitely be from one ofJ1 subset states.

Thus onlyJ1 distinct next states are possible from any state in a subset state trellis.

Moreover, whenJ1 < M, two different inputs belonging to same subset will be rep-

resented by same transition in the subset trellis, if they start in a common subset state.

Hence in this case, the trellis will haveparallel transitions, that start from a common

state and end in a common state for all the input symbols in thesame subset.

Note that each subset state contains a union of some ML states. Hence certain paths

merge earlier in subset state trellis when compared to a ML trellis. So the set partition-

ing should be such that we can distinguish between these early merging paths easily. It

is reported that maximizing the intra subset Euclidean distance when partitioning pro-

vides the best performance [8]. The Fig. 3.1 shows the Ungerboeck partitioning [28]

for 8-PSK modulation.
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Figure 3.1: Ungerboeck partitioning for 8-PSK modulation

The branch metric for transition from statesk with an inputx[k] ∈ χ is computed
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by

BMk (sk, xk) = |y[k]− h[0]x[k]−
l=L∑

l=1

h[l]x̂[k − l]|2, (3.2)

wherex̂[n − l], l = 1, 2, · · · , L is the path history associated with the subset statesk.

We have to store the path histories associated with each subset state, since there isn’t a

one-one correspondence between the subset states and the path history like in case of

the ML trellis. Further when subset trellis has parallel transitions, we can exploit the

symmetry of set partitioning to reduce the computational effort. Due to symmetry, we

can use slicing operations to determine the winner from among intra-subset symbols. In

other words, delay free decisions are made to select the winner among all the elements

of a subset. This also reduces the number of branch metric computations toNJ1 from

NM. The state metric for a state is obtained by adding the branchmetric to the past

states metric and selecting the path with minimum metric. This process is continued till

the end of subset trellis. The state with minimum metric in the final stage is selected and

we trace back to determine the transmitted symbols. Fig. 3.2shows the subset trellis of

8-PSK modulation in a 3-tap channel.J = [2 2] set partitioning is employed. Each

thick line in the Fig. 3.2 represents 4 parallel transitions
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Figure 3.2: Subset trellis for [2 2] partition

Note that whenJl = 1, ∀l, RSSE becomes DFE and whenJl = M, ∀l, RSSE

becomes MLSE. Thus, choosingJ carefully, we can get the performance between

DFE and MLSE. For systems with longer impulse response of length (L + 1), using

Jl = 1, l ∈ [L′ + 1, L] and selecting the firstL′ taps partition carefully reduces the
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complexity. ChoosingJl = M, l ∈ [1, L′] andJl = 1, l ∈ [L′+1, L] results in decision

feedback sequence estimator (DFSE).

3.1.2 Simulation Results
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Figure 3.3: Performance of RSSE in minimum-phase and non-minimum phase chan-
nels

Fig. 3.3 shows the performance of RSSE for 8-PSK modulation in minimum-phase

and non-minimum phase channels. We can observe that8-state RSSE performs as

well as a64-state MLSE for minimum-phase channels and8-state RSSE loses per-

formance compared to64-state for non-minimum phase channels. Also, we observe

that MLSE/RSSE perform well in minimum-phase rather than innon-minimum phase

channels. Hence, for non-minimum phase channels, we need toincrease the number of

states of RSSE to get same performance as MLSE. Also, in practice when implement-

ing RSSE for fading channels, a prefilter is implemented to shorten and also shape the

effective channel response as minimum-phase [1].

3.2 Soft Output Equalization Algorithms for HOM

In the following Subsection, we describe a soft equalization algorithm for HOM. It

is developed by applying the ideas of set partitioning and subset state trellis to the
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forward/backward equalization algorithm [2],[15].

3.2.1 Reduced State MaximumA Posteriori Algorithm

Consider the same system model as in Subsection 3.1.1. Usingsame notation as in

previous section, the received symbols are given by

y [k] =

l=L∑

l=0

h [l] x [k − l] + n [k] , k = 1, 2, · · ·N. (3.3)

wheren [k] is additive white Gaussian noise with zero mean and varianceσ2. A state in

the full trellis for this system is denoted bysk = [x [k − 1] x [k − 2] · · ·x [k − L]], the

L most recent symbols. To reduce the number of states, we definea two dimensional

set partitioning,Ω (l), for everyx [n− l], such that signal setχ for thelth tap is divided

into Jl subsets. We index each subset by0, 1 · · ·Jl − 1. The elementxj is an element

of the subset stateaj(l) underΩ (l) partition.

This partitions are constrained by [8]

• The numbersJk are non-increasing, i.e,J1 ≥ J2 ≥ · · · ≥ JL.

• Ω (k) is a further partition of the subsets ofΩ (k + 1) for eachk between 1 and

L− 1.

The trellis formed by the subset states is referred to as the ‘subset state trellis’. It

will have
k=L∏

k=1

J [k] states. There will beJ [1] transitions from each state in this trellis.

Each transition in this subset trellis has as many parallel transitions as the number of

elements in the corresponding subset.

The set partitioning is done according to Ungerboeck set partitioning principles

described in Subsection 3.1.1. Fig. 3.1 describes the set partitioning for 8-PSK modu-

lation.

Without loss of generality, let us consider a partition scheme withJ [1] = 2, J [2] =

2, J [l] = 1, for l ∈ [3, L] for an 8-PSK modulated system. The 8-PSK symbols in

subset states with indices0 and1 areχ (0) = {1, j,−1,−j} andχ (1) = {1 + j,−1 +
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j,−1− j, 1− j} respectively for a two subset Ungerboeck set partitioning.The subset

trellis for this partition scheme has only4 states denoted byS = {r0, r1, r2, r3}. The

state is also denoted by an ordered pair of2 binary bits,(a [k − 1] , a [k − 2]) at stagek.

The subset state trellis for this system is given in Fig. 3.4
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Figure 3.4: Subset trellis with 4 states

The setB = {(0, 0), (0, 2), (1, 0), (1, 2), (2, 1), (2, 3), (3, 1), (3, 3)} is the set of all

possible transitions in this trellis. A branch in this trellis is denoted by an ordered pair

(i, j, ai,j), such that statesk+1 = rj is reached from statesk = ri at timek with an input

drawn from the subset state with indexai,j.

Let us assume the input random variablesx [k] are IID, i.e.,P (x) =
k=N∏

k=1

P (x [k]).

Now let us compute the probability that transmitted input sequence has a branch

(i, j, ai,j) in the subset state trellis at timek, i.e, P (sk+1 = rj, sk = ri/y). This is

computed efficiently based on forward/backward algorithm [15].

We know

P (sk+1 = rj, sk = ri|y) = P (sk+1 = rj , sk = ri,y) /P (y)
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Applying the chain rule, i.e.,P (a, b) = P (a) P (b|a) to P (sk+1 = rj , sk = ri,y), we

have

P (sk+1, sk,y)

= P (sk+1, sk, (y [1] , · · · , y [k − 1]) , y [k] , (y [k + 1] , · · · , y [N ]))

= P (sk, y [1] , · · · , y [k − 1])
︸ ︷︷ ︸

αk(sk)

· P (sk+1, y [k] |sk)
︸ ︷︷ ︸

γk(sk,sk+1)

· P (y [k + 1] , · · · , y [N ] |sk+1)
︸ ︷︷ ︸

βk+1(sk+1)

(3.4)

αk (s), the forward metric of states at stagek is obtained by the following recursion,

αk (s) =
∑

∀s′∈S

αk−1 (s
′) · γk−1 (s

′, s) , k = 1, 2, . . . , N − 1 (3.5)

The initial conditionα0 (s) depends on the state of channel att = 0. If the starting state

of the channel is known, then the forward metric for that state is1 and0 for the other

states. If all states are possible initially, thenα0 (s) = 1, ∀s ∈ S. Similarly,βk (s) the

backward metric of states at stagek is obtained by the following recursion,

βk (s) =
∑

∀s′∈S

βk+1 (s
′) · γk (s, s′) , k = 1, 2, . . . , N − 1 (3.6)

Similarly the initial conditionsβN (s) are determined by the knowledge of state of sys-

tem at the end of current frame.

The transition probability from statesk = ri to statesk+1 = rj given byγk (ri, rj)

is 0 if the ordered pair(i, j) /∈ B. For all (i, j) ∈ B, the transition occurs when in-

put takes any of the4 symbols inχ (ai,j). The transition probability is then computed

by conditioning it on input taking a particular value. Sincethese events are indepen-

dent,γk (ri, rj) is obtained by summing them. The following equation determines the

transition probability.

γk (sk = ri, sk+1 = rj) =






∑

∀x∈χ(ai,j)

P (x [k] = x) · P (y[k]|sk = ri, x [k] = x) if (i, j) ∈ B

0 if (i, j) /∈ B

(3.7)
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The first term in the product on RHS corresponds to the prior input probability,

which is knowna priori. The second term in the product has a Gaussian probability

distribution function, provided past history of transmitted symbols up to statesk = ri

is known.

Determining the Past History for each State

Let us assume we know the path history of every state in stage(k−1). We are interested

in the survivor symbol for the transition to statesk = ri. Let a denote the subset index

which results in this transition. The survivor symbolx̂[k − 1] to reach statesk = ri is

given by

x̂[k − 1] =

arg max
x∈χ(a)

αk−1 (rl) P (x [k − 1] = x) P (y [k − 1] /sk−1 = rl, x [k − 1] = x) ,

∀l : (l, i) ∈ B

(3.8)

The 3rd term in the product in above expression has a Gaussian pdf andis computed

using

P (y[k − 1]|sk−1 = rl, x [k − 1] = x) =
1√
2πσ2

e−
|y[k−1]−h[0]x−

l=L∑

l=1
h[l]x̂[k−l−1]|2

2σ2 , (3.9)

wherex̂[k − l − 1], l = 1, 2, · · · , L is the path history associated with statesk−1 = rl.

Substituting(k − 1) in eqn. (3.9) withk, we can compute the2nd term of product

in eqn. (3.7). Using this probability and thea priori symbol probability, transition

probability is computed from eqn. (3.7).

Using eqns. (3.7), (3.9) and the recursive relations in eqns. (3.5) and (3.6) along

with known initial conditionsα0 (s) , ∀s andβN (s) , ∀s, we can compute the forward

and backward metrics for every state and transition probability for every branch in this

subset trellis.
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The APP’s for each input symbol are computed using

P (x [k] = x/y)

=
∑

∀(i,j)∈B:x∈χ(ai,j)

αk (ri) · P (x [k] = x) · P (y [k] /sk = ri, x [k] = x) · βk+1 (rj)

(3.10)

Each symbol in aM-ary constellation maps tolog2M bits.The symbol level APP’s

computed using eqn. (3.10) are converted to bit level APP’s using

P (bn−k (j) = 0|y) =
∑











∀x ∈ χ : jth position in binary

mapping of symbol isx is0











P (x[n− k] = x|y) , (3.11)

wherej = 1, 2, · · · , log2M.

This algorithm could also be represented using matrix notation as done in Subsec-

tion 2.4.1. We have to add an extra dimension of input symbol index toP matrices and

modify the equations provided in that subsection. The final equations turn out to be

very similar to those, except for changes due to increase in one dimension of matrixP.

3.2.2 Simulation Results

The performance of RSMAP equalization algorithm is evaluated for 8-PSK modulated

systems in both minimum and non-minimum phase channels. Theimpulse response of

the 3-tap channel used in simulations ish = [0.750.560.37] for minimum phase andh =

[0.407 0.815 0.407] for non-minimum phase channels. Rate1
2

convolution encoder with

constraint lengthK = 3 given by eqn. (2.4) in Subsection 2.3 is used as encoder along

with a block interleaver. We also compare the performance ofRSMAP/MAP followed

by a soft-input channel decoder (denoted by soft RSMAP/softMAP in the figure) with

RSSE followed by a Viterbi decoder (denoted by hard RSSE) forthe convolution rate1
2

code.

Fig. 3.5 shows that8-state RSMAP performs very close to full MAP (64 states) at
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much lower complexity. RSMAP loses only0.2 dB compared to MAP. Also we observe

a gain of about1.8 dB between hard RSSE and soft RSMAP.
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Figure 3.5: 8-state RSMAP vs 64-state MAP equalizer in minimum phase channels

Fig. 3.6 shows that16-state RSMAP performs very close to full MAP (64-states).

RSMAP looses only0.2 dB compared to MAP. Also we observe a gain of about1.8 dB

between hard RSSE and soft RSMAP.
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Figure 3.6: 16-state RSMAP vs 64-state MAP equalizer in non-minimum phase chan-
nels

This demonstrates that RSMAP is near MAP optimal at significantly lower com-

plexity than MAP algorithm. In the next section we discuss the performance of a turbo

equalizer with RSMAP as the inner decoder algorithm.
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3.3 Turbo-Equalization for HOM

The general framework of a turbo-equalizer is described in Section 2.2. The low-

complexity soft-equalization algorithms described in previous section are now applied

in this framework to develop a iterative receiver for HOM in frequency-selective chan-

nels. Specifically we investigated the performance of an iterative receiver in frequency-

selective channels for 8-PSK modulated system.

We simulated the performance of turbo-equalizer for 8-PSK in the minimum-phase

channelh = [0.75 0.56 0.37] with convolutional encoder given by eqn. (2.4) and a

block interleaver.[4 , 2] partition scheme was used in RSMAP, since we observed that

it is near MAP optimal from Fig. 3.5.
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Figure 3.7: 8-PSK Turbo Equalizer in 3-tap ISI channel with 8state equalizer

The gains from turbo-equalizer saturated by the end of5th iteration. We can see

from Fig. 3.7 that there is a gain of about2 dB by the end of5th iteration compared

to soft message passing from RSMAP to decoder. Compared to hard RSSE, a gain of

about4 dB is achieved by the turbo-equalizer.
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CHAPTER 4

SAIC with Iterative Receiver

A lot of work has been done in literature to suppress co-channel interference (CCI).

[23] and [24] focus on co-channel suppression for GSM systems with a single antenna.

For GSM users suffering interference from a co-channel GSM user, Single Antenna

Interference Cancellation (SAIC) algorithms based on the projection method or the

filtering-based techniques give good performance. Howeverwhen we move to higher

order modulation schemes used in present day wireless standards, the receiver architec-

ture has to be modified to suppress CCI. Leveraging the gains from an iterative receiver,

using widely linear filtering based suppression techniquesis a good architecture to sup-

press CCI for HOM users. In this chapter, we describe the outline of receiver envisaged

to suppress CCI and simulate its performance.

4.1 Receiver Architecture to Suppress CCI

At the receiver, the channel estimates of desired user are computed. A block diagram of

the receiver excluding the channel estimator is shown in Fig. 4.1. The received signal is

then filtered using widely linear MMSE prefilter (refer to Appendix B). The objective

of this filter is to

• Suppress the co-channel interferer.

• Shape the effective channel response as minimum phase.

Widely-linear (WL) filtering converts the white noise at theinput of filter to colored

noise at the output. This knowledge has to be utilized in the equalizer to get better

performance. Also the metric has to be computed using widely-linear principles, since

we are employing WL prefilter. More details on WL equalizer are provided in next

section. The equalizer is followed by demodulator, deinterleaver and decoder. The
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Figure 4.1: Iterative SAIC receiver

decoder then passes the information to equalizer completing the feedback loop. This

loop is stopped only after completing a certain number of predetermined iterations or

after achieving a desired error rate.

4.2 Widely Linear (WL) Equalizer

The WL MMSE DFE prefilter transforms white noise to a colored impairment at its

output. Hence the metric computation has to be changed in theequalizer. This com-

putation should utilize the error covariance matrixRee provided by the prefilter. The

received complex signal is converted to a 2×1 vector whose1st element is the real part

and2nd element is the imaginary part of the complex received signal. On passing this

2×1 received signal vectoryn through the 2-D WL MMSE DFE filter(F), the resultant

output can be written as

Vn =

Nb∑

k=0

Bk an−k + en. (4.1)

whereVn denotes a 2×1 effective received symbol vector for the turbo equalizer,en

denotes 2×1 impairment vector andBn is the resultant matrix channel obtained by 2-D

filtering. For a hard-decision equalizer the branch metric is computed by

M = eH R−1
ee e, (4.2)

e = Vn − V̂n (4.3)

V̂n =

Nb∑

k=0

Bk ãn−k, (4.4)

whereã are the surviving symbols for each state in the trellis.
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For soft-output equalizers, we computeP (y [k] |a present state) using

P (y [k] |a present state) =
1

√

2π det(Ree)
e−

|M|2

2 (4.5)

4.3 VAMOS in GMSK

In this section, the performance of a SAIC receiver for a VAMOS user capable of sup-

pressing a co-channel GMSK interferer is shown.

4.3.1 System Model

VAMOS uses Adaptive QPSK (AQPSK orα-QPSK) modulation in which each orthog-

onal sub channel is assigned to a different user within the cell. Sub Channel Power

Imbalance Ratio (SCPIR,χ) is defined as the ratio of power of2nd (quadrature) user

(sin2(α)) to the power of1st (in-phase) user (cos2(α)).

SCPIR= χ = 20 log10(tanα)dB.

Here we consider the discrete time model of VAMOS receiver which doesα-QPSK

detection in the presence of a dominant GMSK interferer.

In the considered scenario of VAMOS downlink transmission,the baseband re-

ceived signal can be written as

y [n] = cos(α)
L∑

k=0

h(k) a1(n− k) + j sin(α)
L∑

k=0

h(k)

a2(n− k) +

L∑

k=0

g(k) b1(n− k) + w(n)

(4.6)

Here, the discrete-time channel impulse responseh(k) of orderL comprises the effects

of GMSK modulation, the mobile channel from base station to desired user, receiver

filtering and GMSK de-rotation at the receiver. We assume that the channel is constant

within a transmission burst (time slot) and varies from burst to burst (block fading).
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Figure 4.2: VAMOS receiver structure

a1(k) anda2(k) denote the GMSK transmit symbols of both users.b1(k) denotes the

GMSK transmit symbols of co-channel interferer andg(k) denotes the channel from

the base station of neighboring cell,w(n) denotes the white Gaussian noise of variance

σ2
n. The factorα denotes the constellation points and the power difference between the

two orthogonal users. We don’t assume the knowledge ofα in the receiver. We assume

the knowledge of training sequence of both orthogonal usersas well as co-channel

interferer for the estimation of channel vector. Fig. 4.2 shows the proposed VAMOS

receiver structure. Appendix A and Appendix B contain the channel estimation and

SAIC algorithms developed for this system.

4.3.2 Simulation Results

In this subsection, we evaluate the performance of VAMOS in GMSK interference with

algorithms discussed above. In all the simulations, the radio channel for the desired

signal and interferer is assumed to be a Typical Urban channel with a vehicular speed

of 3 km/h, i.e., a TU3 channel. The frequency of operation is 900 MHz, and independent

fading for each burst is generated to simulate the effect of ideal frequency hopping. The

entire receiver uses 2X oversampling of the received signal. All the equations derived
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above can be applied even when the receiver does oversampling. We augmented both

polyphase channel outputs into a single vector and applied all the equations. We used

a single dominant interferer model with the interferer passing through an independent

TU3 fading channel through out the analysis. Perfect synchronization between desired

signal and interferer is assumed. Received signal is passedthrough a raised cosine filter

of roll off factor 0.5. To simulate interference limited system, we constrained SNR to

be 30 dB. The performance has been presented in terms of uncoded BER (raw BER) as

a function of average signal to interference power ratio.

In Fig. 4.3, the raw BER of user-1 versus C/I is presented. Here SCPIR is estimated

using ML estimation technique described in Appendix A. Iterative solving of coupled

equations is started from̂α = π
3

and 10 iterations are carried out before converging to

final estimates of̂α.
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Figure 4.3: Raw BER of user-1 versus C/I (C1 + C2 = C) for different ML estimated
SCPIR values, WL RSSE with [ 2 2 ] set partitioning.

In Fig. 4.4, the raw BER of user-1 versus C/I is presented. Here SCPIR is estimated

using blind estimation technique described in Appendix A. One dimensional search is

implemented using ‘golden section search’ technique.

As χ increases, power of user-1 decreases and hence the performance decreases.

We can see that raw BER even in the worst case meets the requirement suggested in

[22]. We can see from figs. 4.3 and 4.4 that the loss in performance is negligible due to

blind estimation. Hence blind estimation of SCPIR can be implemented in the receiver.
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Figure 4.4: Raw BER of user-1 versus C/I (C1 + C2 = C) for different blind estimated
SCPIR values, WL RSSE with [ 2 2 ] set partitioning.

38



CHAPTER 5

Low Complexity Detection of MIMO Systems

5.1 Introduction

Spatial multiplexing over a multiple-input multiple-output (MIMO) channel is a tech-

nique that can be used to meet the increasing demand for higher wireless data rates

when constrained with limited spectrum. We are interested in V-BLAST [31] transmis-

sion scheme, in which data is demultiplexed inton streams to be transmitted from each

of then transmit antennas across a flat-fading channel. The receiver with m receive

antennas receivesn streams, each experiencing interference from other streams.

Various detection algorithms could be implemented at the receiver. The optimal

decoding scheme, from the point of minimizing the symbol error for uncoded trans-

mission, is the maximum likelihood (ML) detection. ML detector which provides a

diversity of orderm at high SNR has a complexity of the order ofMn, whereM is the

size of modulation alphabet used. Several low-complexity detection algorithms were

proposed in literature. The original V-BLAST detector performs interference cancella-

tion, nulling and optimal ordering. There is also minimum mean square error V-BLAST

[13]. The V-BLAST detector can be implemented by QR decomposition followed by

a successive interference cancellation receiver. These algorithms are equivalent to a

decision feedback equalizer (DFE). The main drawback of these detection algorithms,

even after optimal ordering, is the low diversity order for the first stagem− n+1 [20],

resulting in the error propagation which limits the performance. To overcome this, au-

thors in [5] proposed to use ML decoding for firstp stages, followed by a DFE for the

later stages.

Sphere decoding (SD) [30] is known to provide optimal performance for MIMO SM

systems. However the problem with SD is its variable complexity depending on chan-

nel conditions. Recently, fixed complexity sphere decoder was proposed [4]. These



are hard-detection algorithms. The authors in [17] proposesoft-detection algorithms

for MIMO systems using two breadth-first algorithms, M algorithm and T algorithm.

A fixed complexity sphere decoder which outputs soft information is also developed

[3]. The authors in [21] utilize the ideas from reduced statesequence estimation [8]

and Ungerboeck set partitioning [28], and propose uniform set partitioning (USP). The

performance of this algorithm degrades at high SNR. This approach is referred to as re-

duced state sequence detector (RSSD). In [14], authors propose the use of non-uniform

set partitioning, recognizing that more partitions are required for the initial stages than

later stages due to the low diversity order of the initial stages. RSSD based on QR

decomposition of channel matrix is a very elegant method that approaches the perfor-

mance of ML decoding at a much lower complexity [14]. An adaptive M-algorithm

in conjunction with set partitioning is used in [16]. In thisapproach set partitioning

for each stage is adapted depending on channel conditions.This algorithm has variable

complexity. In this paper, we are interested in soft detection algorithms with determin-

istic complexity. To the best of our knowledge, this is the first paper to address the

computation of symbol APP’s using ideas inspired from maximum a posteriori (MAP)

equalizer [15] and RSSE [8] for MIMO systems in flat fading channels.

The main contributions from this paper are

• Developed a framework and implemented BCJR algorithm on a reduced state

tree, formed by set partitioning and uses ideas from RSSE to output soft informa-

tion on transmitted bits.

• A forward only soft detection algorithm is developed. We define the soft decision

failures that occur with forward only algorithm. We bound the number of soft de-

cision failures and also propose a mechanism to prevent softdecision failure that

occurs when backward recursion is not implemented. Reduction in complexity at

a negligible loss in performance when max log approximationis applied is also

recognized.

• Exact complexity to implement these algorithms is computedand we also analyze

the performance of these algorithms.

The outline of the remainder of the paper is as follows. In section II we describe the
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system model. In section III the notation used is described.Also RSSD algorithm pre-

sented in [14] is briefly described in this section. In section IV the need for non-uniform

set partitioning is intuitively explained, formal proof isgiven in [14]. In section V re-

duced state maximum a posteriori (RSMAP) detection algorithm is presented. In sec-

tion VI the approximate versions of RSMAP algorithm are presented. The complexity

analysis and the simulation results are presented in sections VII and VIII respectively.

Finally conclusions are given in section IX.

5.2 System Model

Let us consider a typical MIMO communication system with a convolutional encoder

and a block interleaver. The interleaved coded bits, modulated using aM-ary modula-

tion scheme (signal set denoted byχ), are transmitted fromn transmit antennas. The

received signals are given by

y = Hx+w (5.1)

wherex representsn× 1 vector of transmitted symbols from an transmit andy repre-

sents them×1 vector of received symbols from am receive antenna system. Them×n

matrix H represents the block fading channel between then transmit andm receive

antennas. Every element of this matrix is a circularly symmetric complex-Gaussian

random variable with zero mean and unit variance, representing the channel between a

transmit-receive antenna pair. We assume the receiver knows the channel matrixH. The

m × 1 vectorw represents the additive complex white Gaussian noise vector in which

each element has zero mean and varianceσ2. The power from each transmitted antenna

is normalized to1
n
, so that the total signal power at transmitter is unity. The signal to

noise ratio (SNR) is defined as1
σ2 . We are interested in the case whenn ≤ m ≤ n+ 1,

since whenm ≫ n low-complexity schemes such as V-BLAST detection perform very

well.
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5.3 Hard Detection of MIMO Systems

5.3.1 QR decomposition

The first step is to perform QR decomposition of the channel matrix H, resulting in

two matricesQ andR, whereQ is anm ×m unitary matrix andR is anm× n upper

triangular matrix. We know that matrixR is independent of matrixQ and elements

of R are independent of each other [27]. Also the square of the absolute values of the

diagonal entries ofR are Chi-square distributed, with2 (m− i+ 1) degrees of freedom

for theith diagonal element and the last diagonal element,rnn has the least degrees of

freedom. Hence it sees the worst channel statistics. We now definez as

z = QHy = Rx+ w̃ (5.2)

wherez is am× 1 vector,w̃ is am× 1 complex white Gaussian noise vector with zero

mean and varianceσ2 and(.)H denotes the Hermitian (conjugate transpose) operation.

Since the bottom(m− n) rows of the upper triangular matrixR are all zeros, the

corresponding rows inz contain only noise. Hence ignoring these(m− n) rows, we

have 
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(5.3)

The vectorsz, w̃ and the matrixR are redefined to contain only the firstn rows, ignor-

ing the last(m− n) rows. We define the vectorri asri =
[
ri,i, ri,(i+1), . . . , ri,n

]
.

5.3.2 Set-Partitioning and Representation on a tree

The optimal ML detector for the system eqn. (5.1) requires a search overMn possible

ordered pairs of transmitted symbols. This receiver has high complexity. To reduce this

complexity, but still achieve near ML-performance, we use ideas from set partitioning

and RSSE [8]. Since thexn doesn’t suffer from any interference, we start our detection
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algorithm here. We define a two-dimensional set-partitioning schemeΩ (k) for xk.

Specifically, we divide theM-ary constellation intoJk subsets for thekth elementxk.

The symbolxk under partitionΩ (k) is in subset with indexak (k) ∈ [0 , Jk − 1]. The

set-partitioning is done such that intra-subset Euclideandistance is maximized. Let

us define a(n + 1) × 1 vector,K = [K0, K1, K2, . . . , Kn], whereK0 = 1, Ki =
i−1∏

k=0

Jn−k, i = 1, 2, . . . , n, i.e., the lastn elements are the cumulative product of vector

J = [Jn, Jn−1, . . . , J1].

The tree on which the detection algorithms are implemented is described now. We

define a parent node indexed by0, from whichK1 = Jn child nodes originate, each

corresponding to a subset statet1 = [an (n)] at stage1 as perΩ (n). Each of these

nodes further branch out toJn−1 child nodes, each now corresponding to a subset state

vectort2 = [an−1 (n− 1) , an (n)]. The number of child nodes at this2nd stage isK2.

This process is continued till we reach the last stage. At thefinal stagen, the total

number of child nodes is given byKn and each corresponds to a subset state vector

tn = [a1 (1) , . . . , an−1 (n− 1) , an (n)]. This tree is referred to as ‘subset state tree’.

A node in the tree indexedi at stagek is denoted byrki , i = 0, 1, . . . , Kk−1 andk =

0, 1, 2, . . . , n (Note the superscript is dropped when there is no confusion). The start-

ing parent node is denoted byr00. The set of all possible states at stagek is Sk =

{rk0 , rk1 , . . . , rkKk−1}. sk denotes a state from this set at stagek. For a parent nodei at a

stagek, i = 0, 1, . . . , (Kk−1), k = 0, 1, 2, . . . , n−1, the child nodes at stagek+1 are

indexed by{i, i+Kk, . . . , i+ (Jn−k − 1)Kk}. This representation helps in describing

the soft detection algorithms. The setχk (i, j) refers to the set of all possible input sym-

bols fromχ that result in transition fromrki to rk+1
j . The set of all possible branch tran-

sitions from stagek is denoted byBk = {(i, j) : a branch exists betweenrki andrk+1
j }.

The notationBMk
i,j refers to the branch metric for the transition from statei at stagek

to statej at stagek + 1 in the tree. Fig. 5.1 represents the4 × 4 MIMO system with

J = [4 2 1 1] partition on a tree.
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Figure 5.1: Tree diagram representation of a 4X4 MIMO systemwith J = [4 2 1 1]
partition

5.3.3 Reduced State Sequence Detection

Each edge in the tree of Fig. 5.1 corresponds to a set of parallel transitions whenJk <

M . The sequence detector starts fromxn since it doesn’t suffer from interference due

to other streams. We first select the symbol with minimum branch metric from among

the parallel transitions for every edge. Due to the symmetryin set partitioning, we

can employ slicing to select this winner symbol for each of the Jn child nodes. Let

p1,j = [x̂n,j] denote the survivor symbol vector from among all intra subset symbols for

jth node,j = 0, 1, . . . , K1 − 1 at stage1. We define branch metric as

BM0
0,j = |zn − 〈rn,p1,j〉|2,

where〈a,b〉 denotes the inner product between vectorsa andb. Eachp1,j is fed to

pick intra-subset winners for all the child nodes at stage2 originating fromjth node at

stage1. Branch metrics are also computed similarly for all theK2 nodes at this stage.

The branch metric for transition from statei at stagek to statej at stage(k + 1) is

given by

BMk
i,j = |zn−k − 〈rn−k,p(k+1),j〉|2, (5.4)

wherek = 0, 1, 2, . . . , n−1, j = 0, 1, . . . , Kk+1−1 andi = j (mod)Kk. The(k+1)×1

survivor state vector for nodej at stage(k + 1) is given by

p(k+1),j =
[
x̂(n−k),j pk,i

]
,
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wherex̂(n−k),j is the surviving symbol for the statej at stage(k + 1). Also note that

p0,0 refers to an empty vector.

At the end of stagen, we haveKn =
n∏

k=1

Jk paths, referred to as ‘Subset Survivor

Paths (SSP)’. We obtain a path metricPMi for each SSP, wherei ∈ {0, 1, . . . , Kn−1},

by summing up all the branch metrics in the path. The optimum path is the one with

minimum metric and we trace back on this path to detect the transmitted symbols, i.e.,

x̂ = pn,i⋆ , wherei⋆ = argmin
i

PMi (5.5)

5.4 Non-Uniform Set-Partitioning

We know from ref. [8] that wheneverJk < M there is a SNR gain due to set partitioning

and from [20] thatkth stage of the MIMO has a diversity of the order(m− k + 1). It is

also known from [20] that even optimal ordering, doesn’t change the diversity order and

it only increases the first step SNR by3 dB. Using the approach in [21], the probability

of symbol error is bounded as

P (Es) ≤ P (F ) + Ps (εMLD) , (5.6)

where the first term corresponds to the probability that intra-subset error occurs in slic-

ing and the second term is the probability that wrong SSP is selected, which is outer-

bounded by the same probability over the entire search spaceof ML decoding. The

second term as shown in [32], has a diversity order ofm for each sub-stream symbol.

Using the approach in [5], the first term is upper-bounded by

P (F ) ≤
i=1∑

i=n

Li
(

1 +
d2minJi
4σ2

)m−i+1 , (5.7)

wheredmin is the minimum distance of the signal constellation andLi denotes the

number of nearest neighbors in the subset constellation, which depends onJi. From

eqns. (5.6), (5.7) we know that the error probability is limited by the1st stage (diversity

of m−n+1) and if we do not apply set-partitioning for this stage, performance is then
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limited by the2nd stage with diversitym − n + 2. For the specific case whenm = n,

the first stage is a real bottleneck, since its diversity is only of order1.

In [21], authors proposed the use of USP,Jk = 2q, ∀k ∈ [1, n], 2 ≤ q ≤ log2M . It

is observed that with USP the performance is degraded at highSNR. Set partitioning in

the1st stage resulted in low diversity order, which degraded the performance. Realizing

that except for the first few stages, the remaining stages, due to better diversity orders are

more tolerant to errors introduced by set partitioning, theauthors of [14] proposed non-

uniform set partitioning. Accordingly the number of set partitions for 1st stage,Jn be

M , since it has the least diversity order. The number of set partitions for other stages can

be kept low and they should also be in non-increasing order. Hence it is advantageous

to restrict to partitions withJ = [M,Jn−1, . . . , J1], whereM ≥ Jn−1 ≥ . . . ≥ J1 ≥ 1.

For the case whenm > n, the extra receive antennas increase the diversity order for all

stages, leading to better performance. In these cases, we can also partition the1st stage

symbolxn (the extra diversity order offsets any loss due to set partitioning).

5.5 Soft-Detection Algorithms

In this section, soft-detection algorithms for a general MIMO system in flat fading

channels are developed. We develop a forward/backward algorithm on the lines of

BCJR algorithm [2], [15]. An optimal forward/backward algorithm has high complex-

ity even for modulation schemes such as 8-PSK and moderate number of transmitted

streams. To reduce the complexity, but still achieve near MAP-performance, we develop

this algorithm on a subset state tree depicted in Fig. 5.1. This algorithm is referred as

‘reduced-state maximum-a-posteriori (RSMAP) detection algorithm’.

5.5.1 Reduced State MaximumA Posteriori Detector

The objective is to output the symbol level APP’s,

P (xn−k = x|z) , x ∈ χ, k = 0, 1, . . . , n− 1 (5.8)
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Let us first find the probability that a branch from statesk = ri at stagek to state

sk+1 = rj at stagek+1, given the received observations is in the optimal detectedpath.

This conditional probability is given by

P (sk+1 = rj , sk = ri|z) = P (sk+1 = rj, sk = ri, z) /P (z)

Applying chain rule of probabilities to the numerator, results in

P (sk+1 = rj, sk = ri, z) = P (sk, zn, · · · , zn−k+1)
︸ ︷︷ ︸

αk(sk)

·P (sk+1, zn−k|sk)
︸ ︷︷ ︸

γk(sk,sk+1)

·P (zn−k−1, · · · , z1|sk+1)
︸ ︷︷ ︸

βk+1(sk+1)

(5.9)

The forward metric of a stateri at stagek, αk (ri) is calculated using the following

recursive relation

αk (ri) = αk−1 (rl) · γk−1 (rl, ri) , l = i (mod)Kk−1 (5.10)

Similarly, the backward metric of stateri at stagek, βk (ri) is given by the recursive

relation

βk (ri) =

Jn−k−1
∑

q=0

βk+1 (rj) · γk (ri, rj) , j = i+ qKk (5.11)

The initial conditions are set toα0(r0) = 1 andβn(ri) = 1, ∀i ∈ [0, Kn − 1], since all

states are possible in the last stage. The transition probability is computed by

γk (sk = ri, sk+1 = rj) = P (sk+1|sk) · P (zn−k|sk, sk+1)

This transition probability is0, ∀ (i, j) /∈ Bk and if (i, j) ∈ Bk, this probability is

computed by conditioning RHS on input symbols belonging to the setχk (i, j). Since

these events are independent, transition probability, if(i, j) ∈ Bk is given by

γk (sk = ri, sk+1 = rj) =
∑

∀x∈χk(i,j)

P (xn−k = x) P (zn−k|sk = ri, xn−k = x) (5.12)

The first term in the product on RHS corresponds to the prior input probability, which

is knowna priori. The second term in the product has a Gaussian distribution function,

provided past history of transmitted symbols up to the statesk = ri is known. To
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determine the path history for a statesk = ri, we compute the product under summation

in eqn. (5.12) (substitutingk in the product byk − 1) for all possible input values in

χk−1 (l, i) , l = i (mod)Kk−1, k = 1, 2, · · · , n − 1. Let x̂(n−k+1),i be the symbol that

maximizes this product. The past history for the statesk = ri is given by

pk,i =
[
x̂(n−k+1),i p(k−1),l

]
(5.13)

The second term in the product of eqn. (5.12) is calculated using

P (zn−k|sk = ri, xn−k = x) =
1√
2πσ2

exp

(

−|zn−k − 〈rn−k, [x pk,i]〉|2
2σ2

)

(5.14)

The transition probabilities for all transitions in the tree are evaluated using prior

input symbol probabilities and eqns. (5.12), (5.14). The forward and backward metrics

for all nodes in the tree are evaluated using the eqns. (5.10), (5.11) and the initial con-

ditions. The desired APP’s of the transmitted symbolsP (xn−k = x|z), calculated by

summing the fraction of the branch APP’sP (sk+1 = rj , sk = ri|z) that correspond to

the input symbolxn−k = x, is given by

P (xn−k = x|z) =
∑

∀(i,j)∈Bk:x∈χk(i,j)

αk (ri) P (xn−k = x) P (zn−k|sk = ri, xn−k = x) βk+1 (rj)

(5.15)

Thesea posteriorisymbol probabilities are converted toa posterioribit-level prob-

abilities using

P (bn−k [j] = 0|z) =
∑











∀x ∈ χ : jth position in binary

mapping of symbolx is0











P (xn−k = x|z) , (5.16)

wherej = 0, 1, · · · , log2M, which are then fed to the channel decoder after getting

deinterleaved.

This algorithm differs from BCJR implemented on a trellis for transmission of bi-

nary modulation over frequency selective channels [15] in
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• Unlike in a trellis where lookup table is required to relate present and past/future

states, tree structure in this problem helped us define an exact mathematical rela-

tion between parent and child nodes.

• Lack of summation in eqn. (5.10) because of tree structure instead of trellis.

• Summation in eqn. (5.12) because of the parallel transitions in the tree due to set

partitioning.

• The path history vector in the exponent of exponential in eqn. (5.14) gradually

increases in length as we move from stage1 to stagen, whereas the path history

in case of ISI channels is constant in length.

• Only the part of transition probability of a branch, which corresponds to a partic-

ular symbol is used in the computation of APP for that symbol using eqn. (5.15),

since a single branch maps to a set of parallel transitions.

5.6 Approximate Soft Detection Algorithms

The RSMAP algorithm described in the previous section is theoptimal algorithm for a

given set partitioning scheme, in terms of minimizing the error rate. The downside is its

complexity of implementation, especially for large numberof transmitted data streams,

n. The complexity of RSMAP algorithm is mainly due to

• High memory storage requirement to implement backward recursion.

• Huge number of computations (significant number of them involve exponentia-

tion).

In this section we develop two variations of RSMAP to tackle the two issues mentioned

above.
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5.6.1 Forward RSMAP Algorithm

We can reduce the storage using approaches in [29]. Insteadwe now present a forward

only algorithm that doesn’t require a backward recursion. The forward recursion

in this algorithm is exactly same as in RSMAP detection algorithm (Subsection 5.5.1).

This algorithm involves two stages:

• Soft decision failure correction.

• Computing the symbol APP’s.

This algorithm also starts fromxn and proceeds tillx1. The path history of each state

is found exactly the same way in both RSMAP and forward RSMAP algorithms. At a

given stage(k + 1), the forward metrics of all states and all branch transitionprobabil-

ities are computed using eqns. (5.10), (5.12) and (5.14). The surviving symbol vectors

of length(k + 1) for each state in this stage are mapped to their corresponding binary

bit sequences. WheneverJn−k < M , sometimes some of the bit positions amongst

(k + 1) log2 M are either0 or 1 in all the surviving symbol bit vectors at stage(k + 1).

These bit positions reach hard-decisions due to set partitioning. This is referred to as

‘soft decision failure’. This failure definitely doesn’t occur when the number of par-

titions in a stage isM . This is avoided in RSMAP by the use of backward recursion

and computing the APP’s from the branch transitions. Also note that for a givenJn−k,

the number of bit positions amongstlog2M , corresponding to the symbolxn−k, where

failure happens cannot exceedlog2M − log2 Jn−k, since the surviving symbols should

at least differ inlog2 Jn−k bit positions.

For the bit positions in stage(k+1) where soft decision failure happens, eqn. (5.16)

is used to compute the bit level APP’s, where the corresponding symbol level APP’s are

obtained using

P (xn−k = x|z) =
Kk−1∑

i=0

{αk (ri) P (xn−k = x) · P (zn−k|sk = ri, xn−k = x)} (5.17)

We proceed from stage1 to n, applying soft-decision failure correction wherever

necessary. This algorithm differs from the RSMAP detectionalgorithm in the computa-
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tion of the final symbol APP’s also. We first determinex̂1,j , j = 0, 1, · · · , Kn−1 using

the procedure outlined in Subsection 5.5.1. The survivor state history for all nodes in

stagen is obtained by substitutingk with n in from eqn. (5.13). The APP’s are deter-

mined using

P (xn−k = x|z) =
∑

∀j:pn,j [n−k]=x

αn (rj) , k = 0, 1, · · · , n− 1 (5.18)

Note that waiting till the last stage to compute APP’s results in evenxn getting some di-

versity advantage from the later stages. The bit level APP’sare obtained by substituting

APP’s computed from eqn. (5.18) in eqn. (5.16). Note that at bit positions where the

failure happened, bit-level APP’s computed using information only up to that stage are

used, instead of0 or 1 probabilities obtained by substituting eqn. (5.18) in eqn.(5.16).

This is suboptimal since, those bit positions are not enjoying the diversity advantage

of the later stages, unlike other bits. This affects the performance of this algorithm for

certain set-partitions, an observation validated by simulations.

5.6.2 Max-Log Approximation Algorithm

The famous max-log approximation [26] can be applied to these algorithms to reduce

the complexity even further. For the sake of brevity we are skipping the exact equations

obtained under this approximation. We prove from our simulation results that applying

max-log approximation on RSMAP algorithm does not affect its performance greatly.

On the other hand, this approximation reduces the complexity significantly. The exact

reduction in complexity due to this approximation on RSMAP algorithm is given in the

following section. This approximation could also be combined with forward RSMAP

algorithm developed in Subsection 5.6.1.

5.7 Complexity Analysis

In this section, we compute and compare the implementation complexity for all these

algorithms. Complexity associated with QR decomposition and the computation of bit
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level APP’s from symbol level APP’s is ignored, since it is same for all the algorithms

described. Complexity is measured in terms of the exact number of exponential opera-

tions, branch metric computations, comparisons, additions and multiplications required.

Complexity involved in slicing operations is not included.A single computation involv-

ing eqn. (5.4) and the negative of exponent in the exponential in eqn. (5.14) refers to

one branch metric computation for hard and soft algorithms respectively. For RSSD

algorithm (Subsection 5.3.3), at stagek, we need to computeKk branch metric compu-

tations using equation (5.4), after employing slicing amongst all intra-subset symbols to

determine the survivor symbol. Thus, this algorithms requires a total of
n∑

k=1

Kk branch

metric computations. Also, we observe that
n∑

k=1

Kk additions are required for this al-

gorithm. Finally, we need to implement(Kn − 1) comparisons and also trace back to

determine the transmitted data.

The complexity of implementing the soft-detection algorithms is considerably higher

than RSSD. We only estimate the number of computations required to find the symbol

level APP’s. All the algorithms compute bit level APP’s using eqn. (5.16). For RSMAP

in Subsection 5.5.1, from each node at every stage, we need tocomputeM branch

metrics and one exponential operation for every branch metric computation. Hence the

number of exponential and branch metric computations necessary isM
n−1∑

k=0

Kk. Imple-

menting eqns. (5.11), (5.12) and (5.15) require addition operations. The number of these

additions needed are(2M − 1)
n−1∑

k=0

Kk − nM . Since all the symbols are assumed to be

equiprobablea priori, the multiplications involving a priori probabilities andconstants

in equations (5.12), (5.14) are not included. A normalization of the final symbol APP’s

to make their sum1 is sufficient. The number of multiplication operations needed are

2M
n−1∑

k=0

Kk + 2
n∑

k=1

Kk.

Forward recursion is same in both RSMAP and forward RSMAP algorithm. Hence

the number of exponential operations and branch metric computations required are

same as that of RSMAP algorithm,M
n−1∑

k=0

Kk. Similarly the number of additions re-

quired to compute the transition probabilities isM
n−1∑

k=0

Kk −
n∑

k=1

Kk. The number

of addition operations required in computation of APP’s using eqn. (5.18) is upper-

bounded byMn (Kn − 1). Similarly the number of multiplication operations required
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in computing the forward metrics are
n∑

k=1

Kk. Determining the survivor symbol requires

(M − 1)
n−1∑

k=0

Kk − Kn + 1 comparisons. Whenever soft-decision failure happens in a

stage, irrespective of the number of bit positions where failure happens, the symbol

APP’s are computed using eqn. (5.17). For failure in stagek, computing APP’s us-

ing eqn. (5.17) requiresM (Kk−1 − 1) addition andMKk−1 multiplication operations.

Hence even assuming that failure happens in all stages from stagen−u+1 ton, where

u ∈ [1, n − 1] ∋ Jk < M, ∀k ≤ u andJk = M, ∀k > u, the number of addition and

multiplication operations required areM
n−1∑

k=n−u

Kk−Mn andM
n−1∑

k=n−u

Kk respectively.

Hence the number of addition operations is bounded by

M
n−1∑

k=0

Kk −
n∑

k=1

Kk +Mn (Kn − 1) +M
n−1∑

k=n−u

Kk −Mu

and the multiplication operations are bounded by
n∑

k=1

Kk + M
n−1∑

k=n−u

Kk. Note that

the number of computations to obtain bit level APP’s from symbol level APP’s us-

ing eqn. (5.16) is same in both RSMAP and forward RSMAP algorithms. In forward

RSMAP algorithm, for bit positions where soft decision failure occurred the APP’s ob-

tained from eqn. (5.17) and at the remaining positions, the APP’s from eqn. (5.18) are

used to compute bit level APP’s from eqn. (5.16).

From the above two paragraphs we can observe that RSMAP and forward RSMAP

require same number of branch metric and exponential operations. They differ greatly

in the number of addition and multiplication operations necessary. The table below

summarizes this difference:

in Forward RSMAP,
when compared with RSMAP

Additional Additions Mn(Kn − 1)−M
n−u−1∑

k=0

Kk + 1−M(n− u)

Additional Multiplications −
[

M
n−u−1∑

k=0

Kk +M
n−1∑

k=0

Kk +
n∑

k=1

Kk

]

Table 5.1: Difference in complexity between RSMAP and forward RSMAP algorithms

Hence RSMAP requires fewer additions that forward RSMAP, whereas forward

RSMAP requires fewer multiplication operations than RSMAPalgorithm. From hard-
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ware implementation point of view, multiplications are more difficult than additions.

Also forward RSMAP requires a small number of comparison operations. Hence for-

ward RSMAP has lower complexity than RSMAP algorithm.

Let us now examine the memory storage requirements for both these algorithms.

RSMAP algorithm requires lot of memory since we need to storeforward, backward

metrics of all states and transition probabilities of all branches. Forward RSMAP has

lower memory requirements. We need to store only a vector where we update the bit-

level APP’s for positions where failure happens and a vectorof lengthKn (if memory

cannot be allocated dynamically) to store the forward metrics of all states in a stage.

Temporary variables can be used to store information about transition probabilities.

Therefore forward RSMAP is attractive for systems with veryhigh order modulation

or for systems with large antenna array, where implementingbackward recursion is not

feasible due to memory constraints.

The complexity of RSMAP algorithm when max-log approximation is applied is

significantly lower. All the computations are effectively done in log domain. Product

of exponentials in RSMAP becomes sum of their exponents in max RSMAP algorithm.

In max RSMAP algorithm, a winner is selected from amongst theparallel transitions

using slicing. Branch metric computed using that winner is the transition probability for

that branch. Forward/backward metrics are obtained by adding forward/backward met-

ric of a node to the transition probability metric of each branch originating/terminating

from that node. Finally the symbol APP’s in log domain are computed by adding for-

ward, backward metrics and transition probabilities corresponding to that symbol. The

negative exponents of these APP’s in log domain are normalized to obtain the symbol

level APP’s. This process requires onlyMn exponential operations, much lower when

compared with RSMAP algorithm and is also independent of partition scheme. This

algorithm also doesn’t require any multiplication operations, except during normaliza-

tion of probabilities. The number of branch metric computations and additions required

are comparable in these algorithms. Memory requirements ofmax RSMAP are very

similar to RSMAP algorithm. Hence max-log approximation reduces the complexity

significantly.
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5.8 Simulation Results

A rateR = 1
2

convolution code with constraint length3 and generator polynomial

(1 +D2 1 +D +D2) [19] as an encoder and a block interleaver with100 rows is

used in the following simulations. We simulated the performance of various detection

algorithms with both encoder and interleaver for4 × 4 and4 × 5 MIMO systems in

block fading channels for various partition schemes with QPSK and 8-PSK modulation.

The partition schemes are restricted to be of form[M,J3, J2, J1] from our analysis in

section 5.4. Specifically, the performance of RSMAP for various partition schemes is

compared against the optimal MAP performance for QPSK and wealso discuss the

performance of these algorithms with[8 1 1 1] and[8 4 2 1] partition schemes for 8-PSK.

Fig. 5.2 compares the performance of RSMAP algorithm with the optimal perfor-

mance achieved by MAP decoding algorithm for 4×4 MIMO with QPSK modulation.

We can clearly observe that, with a suitable partition, in this case[4 4 2 1], RSMAP

approaches the performance of MAP. There is a loss of only about 0.1 dB. Similarly,

we can observe that RSMAP with[4 4 2 1] partition in case of 4×5 QPSK modulated

MIMO system, looses only about0.1 dB when compared with the MAP performance.

Hence RSMAP algorithm with a carefully chosen partition scheme is near-optimal. The

choice of partition depends on the complexity-performancetrade-off point of view.
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Figure 5.2: Performance of RSMAP for different partition schemes with 4× 4 QPSK
modulated MIMO system

Fig. 5.4 compares the different detection algorithms for transmission of 8-PSK mod-
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Figure 5.3: Performance of RSMAP for different partition schemes with 4× 5 QPSK
modulated MIMO system

ulation over a block fading channel via4 × 4 MIMO system for[8 1 1 1] partition. We

observe that max RSMAP is as good as RSMAP. This is expected and is observed to be

true in all cases. Henceforth we only present results for RSMAP algorithm. Also both

give about2 dB gain compared with hard RSSD (RSSD followed by a deinterleaver and

a Viterbi convolutional decoder) detector. FRSMAP with soft decision failure refers to

the forward RSMAP algorithm with no soft-decision failure correction mechanism. We

also observe that when soft decision failure is not corrected, it performs the worst. The

fraction of code bits with soft decision failure is very highfor this partition. As a result

a significant portion of the input to the decoder contains incorrect soft information and

hence the performance worsens significantly.
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Figure 5.4: Performance of various detection algorithms for coded4 × 4 MIMO with
8-PSK forJ = [8 1 1 1] partition
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Also note that forward RSMAP algorithm approaches the performance of hard

RSSD at high SNR for[8 1 1 1] partition scheme. To understand this effect, we must

realize that there are two factors at play here, one is the soft processing gain, which

is about2 dB in this case and the effect of diversity at high SNR. For thepartition

J = [8 1 1 1], soft decision failure in stages 2, 3 and 4 results in the corresponding bit

positions enjoying diversity gain of order 2, 3 and 4 respectively. But in case of RSSD,

all bit positions enjoy the diversity order of 4, since we useenergy from every stage in

making a final hard decision. This difference in diversity orders between the two algo-

rithms is indicated by the different slopes for the BER curves of these two algorithms.

As a result at high enough SNR, hard RSSD outperforms forwardRSMAP, which can

be observed around14 dB. It is important to note that even forJ = [8 1 1 1] partition

where soft decision failure happens very frequently, forward RSMAP is better than hard

RSSD in low to medium SNR region in which we are interested in practice.
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Figure 5.5: Performance of various detection algorithms for coded4 × 4 MIMO with
8-PSK forJ = [8 4 2 1] partition

For J = [8 4 2 1] partition, we observe from Fig. 5.5 that FRSMAP with soft deci-

sion failure and forward RSMAP give nearly same performance. This is because soft-

decision failure happens with very small probability for this partition and hence the

effect of not correcting the soft-decision failure is not significant. Since soft-decision

failure is rare for this partition scheme, most bits enjoy the full diversity benefit under

both forward RSMAP and RSSD. This can be observed by noting that the curves cor-

responding to these two algorithms have nearly same slope. As a result the forward
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RSMAP outperforms hard RSSD due to soft processing gain (about 2 dB). We also ob-

serve that for this partition where soft decision failure happens very rarely, removing

backward recursion only results in a loss of performance by about0.3 dB. This is very

analogous to what happens in the case of equalization of frequency selective channels.

For this partition, where the performance of forward RSMAP and RSMAP are com-

parable, forward RSMAP soft detection algorithm is a betterchoice than RSMAP algo-

rithm due to its lower complexity and memory requirements. Hence for partitions where

soft decision failure happens less frequently forward RSMAP is the optimal choice.
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Figure 5.6: Performance of various detection algorithms for coded4 × 5 MIMO with
8-PSK forJ = [8 1 1 1] partition

Figs. 5.6 and 5.7 compare the performance of the same set of algorithms for4 × 5

MIMO system employing 8-PSK modulation. BER in this system is about an order of

magnitude lower than in case of4× 4 MIMO systems, since the system is limited now

by the first stage with a better diversity order of2. This extra diversity order decreases

the error rate, and the explanations given in previous paragraphs are still valid.
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Figure 5.7: Performance of various detection algorithms for coded4 × 5 MIMO with
8-PSK forJ = [8 4 2 1] partition
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CHAPTER 6

Conclusions

A general framework for an iterative receiver is developed and presented. This is appli-

cable for any inner and outer code decoder that takes in soft information and outputs soft

information. We then focused on developing low-complexitydecoding algorithms for

frequency selective fading (ISI) channels and MIMO systems. These algorithms were

found to be near MAP algorithm in performance. Also the iterative receiver developed

for frequency-selective fading channels, along with SAIC prefilter was used to suppress

a single co-channel interferer. For MIMO systems, we developed forward-only soft-

detection algorithm that requires considerably lower memory and lower complexity

than the RSMAP algorithm.

Some possible directions for future work are

• Develop a forward-only low-complexity equalization algorithm for HOM sys-

tems.

• Evaluate the performance of iterative SAIC receiver for thegeneral case of a

EDGE user with a dominant GMSK interferer.

• Develop a low-complexity max forward RSMAP detection algorithm for MIMO

in flat-fading channels.

• Extend the detection algorithms developed for MIMO in flat-fading to MIMO in

frequency-selective channels.



APPENDIX A

Channel Estimation

Here, we observe that both user’s signals in principle propagate through the same chan-

nel. If the received symbols corresponding to the time-aligned training sequences of

both users are collected in a vectory, this vector can be expressed as

y = cos(α) A1 h+ sin(α)A2h+B1 g +w (A.1)

whereA1, A2 andB1 represent( N − L ) x ( L + 1 ) Toeplitz convolution matri-

ces corresponding to the training sequences of user 1, user 2and the interferer re-

spectively with the training sequence lengthN , andh = [h[0] h[1] ... h[L]]T , and

g = [g[0] g[1] ... g[L]]T . For simplicity, the factorj in (eqn. 4.6) has been absorbed

in A2.

A.1 Joint ML estimation

Equation (A.1) is rewritten as

y = l S1 Θ+
√
1− l2 S2 Θ+ S3 Θ+w (A.2)

wherel = cos(α), Θ = [h g]T , S1 =
[

A1 0
]

andS2 =
[

A2 0
]

andS3 =
[

0 B

]

The joint Maximum-Likelihood (ML) estimates forΘ andα result from

minimizing theL2−norm of the error vector

e = y − l̂ S1 Θ̂−
√

1− l̂2 S2 Θ̂− S3 Θ̂,

where l̂ , Θ̂ denote the estimated quantities. DifferentiatingeH e w.r.t. l andΘ and

setting the derivative to zero results in the following two conditions for ML estimates



of Θ andl.

2 l a = b− c

(
1− 2l2√
1− l2

)

− d

(
l√

1− l2

)

− f, (A.3)

Θ =
(
PH P

)−1
PH y. (A.4)

where

a = ΘH
(
S1

HS1 − S2
HS2

)
Θ

b =
(
yHS1Θ +ΘHS1

Hy
)
,

d =
(
yHS2Θ +ΘHS2

Hy −ΘH
(
S2

HS3 + SH
3 S2

)
Θ
)

c = ΘH
(
S1

HS2 + S2
HS1

)
Θ,

f = ΘH
(
S1

HS3 + SH
3 S1

)
Θ,

P = l S1 +
√
1− l2S2 + S3

Equations (A.3) and (A.4) may be viewed as ML estimate ofl givenΘ, and ML estimate

of Θ given l respectively. However, it does not seem possible to obtain aclosed form

solution tol,Θ from the coupled equations, one can solve them iteratively from any

initial choice ofl.

A.2 Blind estimation

The received signal during training sequence is written as

y = l A1 h+
√
1− l2 A2h+ B1g +w. (A.5)

When the knowledge ofl is available,

y =
[

lA1 +
√
1− l2A2 B

]

Θ+ w = SΘ+w. (A.6)
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Let φΘΘ = E
[
ΘΘH

] ∼= I2(L+1) be the second order statistics of the channel. The pdf

of y givenl is given by

fy/l(y) =
1

πM
×

1

det(φyy/l)
× e

{

−yH φ−1
yy/l

y
}

(A.7)

whereφyy/l
= SφΘΘ SH +η IM . The ML estimate ofl can be obtained by maximizing

theln(fy/l(y))

∴ l̂ = argmax
l

{−yH φ−1
yy/l

y − ln(det(φyy/l
))}

=⇒ l̂ = argmin
l

{yH φ−1
yy/l

y + ln(det(φyy/l
))}

Θ̂ =
(
SHS

)−1
SHy

Here one-dimensional search is required which is less complex than iteratively solving

the two equations and the performance is almost same. When implementing a single-

dimensional search, MS can use the knowledge ofα in previous frame and can getα

of the current frame with out much computation. So, essentially the blind technique

involves a one-dimensional search in the first burst of communication and it can be

updated to design low complexity receivers.
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APPENDIX B

Single Antenna Interference Cancellation Algorithms

We describe the implementation of SAIC algorithm for the case of VAMOS in GMSK.

We use the channel estimation techniques presented in appendix A to get estimates ofα

andθ, the received symbols are obtained from equation (4.6) as follows.

y [n] =
L∑

k=0

h(k) [cos(α) a1(n− k) + j sin(α) a2(n− k)]

+

L∑

k=0

g(k) b1(n− k) + w(n)

=⇒ yn =

L∑

k=0

Hkan−k +

L∑

k=0

Gkbn−k +wn,

︸ ︷︷ ︸

impairement vectorqn

(B.1)

where

Hk =




hI(k) −hQ(k)

hQ(k) hI(k)



 , Gk =




gI(k)

gQ(k)





ak =




cos(α) a1(k)

sin(α) a2(k)



 ,wn =




wI(n)

wQ(n)



 ,bk = b1(k).

As shown in figure (4.2), the vector impairment signal can be suppressed using a

2-D MMSE DFE-feed forward filter . We denote theFn as matrix 2-D prefilter that

is used. This matrix prefilter is designed to shorten the length of channel as well to

suppress the interference (should maximise the SINR at the output of prefilter). MMSE

based prefilter can be used to solve the probelm. For example,[1],[12] explores the

channel-shortening prefilters for MIMO channels. We use prefilter designed in [1], but

it gives a coloured impairment at the output of filter. On passing the 2×1 received signal



vectoryn through the 2-D WL MMSE filter(F), the resultant output can be written as

Vn =

Nb∑

k=0

Bk an−k + en. (B.2)

whereen denotes 2×1 impairment vector andBn is the resultant matrix channel ob-

tained by 2-D filtering.We use ITC constraint in [1] to get monic, causal, minimum-

phase resultant matrix channelBn.
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