
Livening up and Segmentation with Blur

A Project Report

submitted by

ANSHUL BHAVESH SHAH

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY AND MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

May 2018



THESIS CERTIFICATE

This is to certify that the thesis titled Livening up and Segmentation with Blur,

submitted by Anshul Bhavesh Shah, to the Indian Institute of Technology, Madras,

for the award of the degree of Bachelor of Technology and Master of Technol-

ogy, is a bona fide record of the research work done by him under our supervision.

The contents of this thesis, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

Prof. A. N. Rajagopalan
Research Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai
Date: 10 May 2018



ACKNOWLEDGEMENTS

I would like to thank Prof. A.N. Rajagopalan for being an an excellent mentor,

guide and a teacher. Thank you for always being there for discussions and brain-

storming sessions. I am fortunate to have been a part of the IPCV lab which has an

excellent research atmosphere. Working on this project for the past year at IPCV

lab gave me insight into research in academia and motivated me to pursue a PhD

in the field of Computer Vision.

I am happy to have worked with Kuldeep for my projects. This research would

not have been possible without your enthusiasm and dedication. I thank you for

motivating me when things did not work as expected. I would also like to thank

my labmates from IPCV lab Nimisha, Subeesh, Mahesh, and Srimanta for always

being there whenever I needed help and for making the lab a fun place to work.

Thanks to Bharat and Sunil for the interesting discussions and making the lab

lively.

The thesis would not have been possible without the support of my wingmates.

Thanks for bearing with me for my long hours in lab.

Last but not the least, I thank my family for being a strong pillar of support.

i



TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

LIST OF FIGURES v

ABBREVIATIONS vi

NOTATION vii

1 INTRODUCTION 1

1.1 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Summary of contributions . . . . . . . . . . . . . . . . . . . . 2

2 Relevant concepts 3

2.1 Motion Deblurring . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Motion Blur . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Deblurring using traditional approaches . . . . . . . . . 3

2.1.3 Deblurring using Learning based approaches . . . . . . 4

2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 4

2.3 Recurrent Neural Networks and ConvLSTMs . . . . . . . . . . 5

2.3.1 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 ConvLSTM cells . . . . . . . . . . . . . . . . . . . . . 7

2.4 Spatial Transformer Networks . . . . . . . . . . . . . . . . . . 8

3 Reliving Blurred Moments 10

ii



3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Recurrent Video Encoder (RVE) . . . . . . . . . . . . . 17

3.2.2 Recurrent Video Decoder (RVD) . . . . . . . . . . . . . 18

3.2.3 Blurred Image Encoder (BIE) . . . . . . . . . . . . . . 19

3.3 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.1 Quantitative Results . . . . . . . . . . . . . . . . . . . 23

3.5.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . 29

4 Blur detection and segmentation 30

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Patch Level Classification Network . . . . . . . . . . . 34

4.3.2 Image Level Regression Network . . . . . . . . . . . . 35

4.3.3 Final Detection and Segmentation . . . . . . . . . . . . 37

4.4 Dataset and Implementation Details . . . . . . . . . . . . . . . 38

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.1 Comparisons with existing methods . . . . . . . . . . . 40

4.5.2 Applications . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusion and Future Directions 42

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 43



LIST OF FIGURES

2.1 Convolution and Deconvolution layers . . . . . . . . . . . . . . 5

2.2 Visualization of STN architecture . . . . . . . . . . . . . . . . 9

3.1 Videos generated by our method. The first row shows input blurred
images while the second row contains the generated videos. Videos
can be viewed by clicking on the image, when document is opened
in Adobe Reader. . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Our architecture. The first step involves training the RVE-RVD
for the task of video reconstruction. This is followed by guided
training of BIE-RVD. . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Architectures of BIE and RVE. The RVE is trained to extract a
motion representation from a sequence of frames while the BIE
is trained to extract a motion representation from a blurred image
and a sharp image. . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Our Recurrent Video Decoder (RVD). This module recurrently
generates optical flows which are warped to transform the sharp
frame. Flows are estimated at 4 different scales. . . . . . . . . . 20

3.5 Video generation on images blurred with global camera motion
from datasets of Lai et al. (2016) and Köhler et al. (2012). First
row shows the blurred images and second row, the generated videos. 26

3.6 Our Results on motion blurred images obtained from dataset of
Nah et al. (2016). First row shows the blurred images and second
row, the generated videos. . . . . . . . . . . . . . . . . . . . . . 27

3.7 Our results on real motion blurred images obtained from dataset
of Shi et al. (2014). The first and third rows show the blurred
images and second and fourth rows show the corresponding gen-
erated videos. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Our Blur-detection and Segmentation framework . . . . . . . . 31

iv



4.2 Qualitative comparison of various blur detection algorithms on
partially motion blurred scenes. . . . . . . . . . . . . . . . . . . 35

4.3 Qualitative comparison of various blur detection algorithms on
partially motion blurred scenes. . . . . . . . . . . . . . . . . . . 38

4.4 Matting and blur magnification: Eagle from (a) is transferred to
(b) using matting. Background blur in (c) is magnified in (d) . . 41

v



ABBREVIATIONS

CNN Convolutional Neural Networks

RNN Recurrent Neural Networks

ReLU Rectified Linear Unit

Tanh Hyperbolic Tangent

LSTM Long Short Term Memory

BPTT Backpropogation Through Time

ConvLSTM Convolutional LSTM

STN Spatial Transformer Networks

RVE Recurrent Video Encoder

RVD Recurrent Video Decoder

PSNR Peak Signal to Noise Ratio

TV Total Variation

MRF Markov Random Fields

vi



NOTATION

ot Output gate
it Input gate
Wo, i, f, a Weights for output, input, forget and state
bo, i, f, a bias for output, input, forget and state
xi Image frames
xb Blurred image
x̂N

2
Deblurred sharp frame

x̂i Generated frames
hencn Hidden state of encoder at step n
he,N Last hidden state of encoder n
fn,i Flow map at step n and scale i
hdecn Hidden state of decoder at step n
Ln Loss at step n
b(p) Blur probabilities
ki kernel i

vii



CHAPTER 1

INTRODUCTION

In this thesis we explore solutions to two research problems from Computer Vi-

sion - 1) Reliving blurred moments and 2) Defocus Density estimation.

Reliving blurred moments: In this work we ask a simple question : Is it possi-

ble to relive the scene as the camera experienced during exposure? Motion blurred

images are known to be a nuisance for many computer vision applications. But, in

this work we show that the presence of blur in images can reveal information about

how the scene evolved during capture and go on to create a video. We solve this

highly ill-posed problem using Deep neural networks which have revolutionised

the field of Computer Vision. While image deblurring is an active research area in

computer vision, our work on extracting a video and not a single frame is the first

of its kind.

Defocus density estimation: Here we explore the problem of detection and seg-

mentation of blurred regions in images. This is useful as it can help in blur mag-

nification to obtain the desired amount of Bokeh effect or perform image matting.

We use two CNN based architectures to extract the low level and global blur in-

formation from the image and then combine these to segment the image using a

MRF based framework.

1.1 Thesis outline

This thesis is organized as follows : The second chapter introduces some core

ideas and concepts related to the two works. The third chapter addresses the



problem of extracting a video from a single motion blurred image and the fourth

chapter gives our approach towards estimating blur estimation and segmentation.

1.2 Summary of contributions

The following is the summary of the major contributions of this thesis :

• In Chapter 3, we present a novel work on generating a video from a motion
blurred image. We specifically focus on the Video autoencoder which serves
as a proxy network for the final task of Blurred image to video generation.
The training of this network helps simplify the non-trivial task. The ar-
chitectural design allows the network to seamlessly handle spatio-temporal
information. Further, it makes the learnt networks more interpretable. The
Recurrent Video Decoder can be directly used in the subsequent training of
the Blurred Image Encoder. The work on BIE(Blurred Image Encoder) and
onwards was done by other members in our lab. However, we discuss those
in the thesis for completeness.

• In Chapter 4, we propose two networks for detection of blur regions in the
image and segment the image. This thesis specifically focuses on the patch
level regression network which allows us to extract local blur information
from the scene. This information is combined with the image level blur
information coming from the Image Level Regression network to give the
final blur map. The work on Image Level Regression network and onwards
was done by other members in our lab but we mention it here for complete-
ness.

2



CHAPTER 2

Relevant concepts

2.1 Motion Deblurring

2.1.1 Motion Blur

While imaging has improved by leaps and bounds in the recent years, captured

content still faces suffers from a lot of degradations and artifacts. Motion blur is

a primary problem. In Vasiljevic et al. (2016), it has been shown that standard

network models used for vision tasks and trained only on high-quality images

suffer a significant degradation in performance when applied to images degraded

by blur. It arises due to the change in scene that is seen by the camera during the

exposure time. It can occur due to camera motion, object motion or both. This is

usually the case in low-light situations where the exposure time of each frame is

high and in scenes where significant motion happens within the exposure time.

2.1.2 Deblurring using traditional approaches

Motion deblurring is a challenging problem in computer vision due to its ill-posed

nature. Recent years have witnessed significant advances in deblurring Vasu and

Rajagopalan (2017) Pan et al. (2016c)Pan et al. (2014). Numerous methods Xu

and Jia (2010), Pan et al. (2016b), Krishnan et al. (2011) and Xu and Jia (2010)

have been proposed to address this problem using hand-designed priors for repre-

senting sharp images.



2.1.3 Deblurring using Learning based approaches

Few approaches Chakrabarti (2016)Schuler et al. (2013)Schuler et al. (2016) es-

timate the latent sharp image using Convolutional Neural Networks (CNN) but

include an additional blur kernel estimation step. Most of them account for cam-

era motion alone thus severely limiting the possibilities. Few methods Pan et al.

(2016a) Hyun Kim et al. (2013) segment images into regions with and without

blur, and are thus restrictive in practice. A few methods Sun et al. (2015) Gong

et al. (2017) have been proposed to remove heterogenous blur but are limited in

their capability to handle general dynamic scenes. Since these methods strongly

rely on the accuracy of the assumed image degradation model and its estimation,

they do not perform well in real-world scenarios. The methods of Nah et al. (2016)

and Nimisha et al. (2017) are able to overcome these limitations to some extent

by learning to produce the latent sharp image, without the need for blur kernel

estimation by using a CNN based architecture.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) have revolutionized the field of Computer

Vision. The interest in CNN started with AlexNet in 2012 and it has grown expo-

nentially. They effectively help the computer see and have been used for a lot of

vision tasks like classification, segmentation, enhancement, etc and they beat tra-

ditional methods by a large margin for most of image related tasks. The surge of

interest in CNN has led to introduction of many different architectures, additions

and modifications to the original CNNs.

Convolution Layer: Convolution layers form the major building block of a

4



Figure 2.1: Convolution and Deconvolution layers

CNN. Here we work with 2D convolution as we are dealing with 2D feature maps.

This layer is much more efficient than a fully connected layer used in other deep

learning applications. Parameter sharing enforces that the feature maps are more

meaningful and the number of parameters are not as high as fully connected layers.

These layers are typically followed by non-linearities like ReLU, Sigmoid, TanH.

Pooling is also used to reduce the dimensionality which reduces the number of

parameters and combats overfitting. Commonly used types of pooling are Average

pooling and max pooling.

Transposed Convolution Layers: Transposed Convolution Layers or frac-

tionally strided convolution are used to increase the resolution of the feature maps

after series of downsampling operations reduce the size of the input. Since, a

naive upsampling inadvertently loses details, these layers are trainable. These are

often used in Encoder Decoder networks.

2.3 Recurrent Neural Networks and ConvLSTMs

Recurrent Neural Networks (RNN) are neural network models that are often used

to model sequences. They help account for dependence between inputs and can

5



handle variable number of inputs. The do this by sharing of parameters between

the various time steps and recurring on a high dimensional vector ( called the

hidden state ).

These networks are trained using an algorithm known as backpropogation

through time (BPTT). These networks are often notoriously difficult to train due

to vanishing and exploding gradients problem.

2.3.1 LSTM

It is a variant of RNN. The use of LSTM ( Long Short Term Memory ) cells

have been instrumental in solving the above problem. The intuition is that they

offer selective read, selective write and selective forget capabilities. The full set

of equations for LSTMs are as follows :

Gates : The gates help to selectively pass on information.

ot = σ(Woht−1 + Uoxt + bo)

it = σ(Wiht−1 + Uoxt + bo)

ft = σ(Wfht−1 + Ufxt + bf )

6



States : The states hold the information over time steps.

s̃t = σ(Waht−1 + Uaxt + ba)

st = ft � st−1 + it � s̃t

outputt = ot � σ(st)

where ot is the output gate, it is the input gate and ft is the forget gate. The

subscripts denote the step in the sequence. st is the hidden state and outputt is the

output of the cell. Wo,i,f,a, Uo,i,f,a and bo,i,f,a are the weights that are learned.

2.3.2 ConvLSTM cells

ConvLSTM ( Convolutional LSTM ) is a special variant of LSTM cell which was

introduced by Xingjian et al. (2015) in 2015 for the task of Precipitation Nowcast-

ing. They extended the fully connected LSTMs to have convolutional structures

in input-state and state-state transitions. Effectively, matrix multiplication is re-

placed by convolution operations. The use of ConvLSTMs, enables efficient flow

of spatio temporal data in videos. Following are the equations of ConvLSTM

cells.
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Gates :

ot = σ(Wo ∗ ht−1 + Uo ∗ xt + bo)

it = σ(Wi ∗ ht−1 + Uo ∗ xt + bo)

ft = σ(Wf ∗ ht−1 + Uf ∗ xt + bf )

States : The states hold the information over time steps.

s̃t = σ(W ∗ ht−1 + U ∗ xt + b)

st = ft � st−1 + it � s̃t

ht = ot � σ(st)

2.4 Spatial Transformer Networks

Spatial Transformer Networks ( STN ) were originally introduced by Jaderberg

et al. (2015) for improving the classification accuracy of networks. Their motiva-

tion was that the classification models must be robust to input variations like scale,

viewpoint variation and deformation. Though pooling layers impart some amount

of the required invariance they do so by discarding a lot of data in the process. The

idea of STN is to provide CNNs with explicit spatial transformation capabilities.

STN layers are modular, differentiable and dynamic which have made them very

popular.

The module itself consists of 3 components :

8



Figure 2.2: Visualization of STN architecture

Localization network : The localization network takes the input feature map

through a number of hidden layers and results in the parameters of the spatial

transformation that should be applied to the feature map. For example, 6 pa-

rameters are required for affine transformation. Thus this component produces a

transformation that is conditioned on the input.

Grid Generator : The predicted transformation parameters are used to generate

a sampling grid, which is a set of points where the input map must be sampled

to produce the transformed output. This module effectively creates the inverse

mapping as done in source to target mapping.

Sampler : This is the final component of the layer. Here, the feature map and the

sampling grid is taken as input and the resulting output map is generated which

is sampled from the inputs at the grid points. Billinear interpolation is used to

sample points from the input.

9



CHAPTER 3

Reliving Blurred Moments

3.1 Overview

Given a blurred image, humans can mentally reconstruct (sometimes ambiguously

perhaps) a temporally coherent account of the scene that represents what tran-

spired during exposure time. However, in computer vision, natural video mod-

elling and extraction has remained a challenging problem due to the complexity

and ambiguity inherent in video data. Videos comprise a large majority of the vi-

sual data in existence, surpassing by a wide margin ‘still’ images, and they contain

diverse spatio-temporal variations that conventional models are often incapable of

synthesizing. With the success of deep neural networks in solving vision tasks,

end-to-end deep networks have emerged as incredibly powerful tools. They are

especially suited for video interpolation and extrapolation tasks, where training

data is virtually infinite, since any video can be used to train such an unsupervised

deep network.

Few works on visual prediction focus on modeling and estimation in pixel

space, i.e. reconstructing images by calculating pixel values directly. In particu-

lar, Kalchbrenner et al. (2016) proposes a video pixel network and estimates the

discrete joint distribution of the raw pixel values. Srivastava et al. (2015) uses a

Long Short-Term Memory (LSTM) network to learn representations of video and

predict future frames from it. Vondrick et al. (2016) employs adversarial train-

ing and generates intensities from scratch. However, since the future is similar



Figure 3.1: Videos generated by our method. The first row shows input blurred
images while the second row contains the generated videos. Videos
can be viewed by clicking on the image, when document is opened in
Adobe Reader.

to the past, models which directly regress to pixel intensities need to inherently

store low-level details (e.g., colors or edges) of the input image at every layer of

representation. Not only is this inefficient use of network capacity, but it may also

make it difficult for the network to learn desirable invariants that are necessary for

motion prediction. Recent works on future frame prediction reveal that direct in-

tensity estimation leads to blurred predictions but motion prediction resolves this

issue. If a frame is reconstructed based on the original image and corresponding

transformations, both scene dynamics and invariant appearance can be preserved

well. Based on this premise, Flynn et al. (2016),Zhou et al. (2016) and Liu et al.

(2017) model the task as a flow of image pixels.

Though there has been a lot of research in deblurring, we wish to highlight

here that all existing methods limit themselves to the task of generating ‘a’ de-

blurred image. In this paper, we ask an interesting question. Given a blurred

11



frame, is it possible to revive and relive all the sharp views of the scene as seen by

the camera during its flight within the exposure time? To the best of our knowl-

edge, the problem of extracting an ordered motion sequence from a single blurred

image has never been addressed in the literature. Even under the very strong as-

sumption of static and planar scenes, state-of-the-art deblurring methods such as

Vasu and Rajagopalan (2017) Pan et al. (2016c) estimate at best a group of poses

which constitute the camera motion, but with total disregard to their ordering.

As a post-processing step, synthesising a sequence from this group of poses is

a non-trivial task. Although the camera trajectory can be tapped to an extent by

gyroscope sensors attached to modern cameras, the obtained data is too sparse to

completely describe trajectories within the time interval of a single lens exposure.

More importantly, sensor information is seldom available for most internet im-

ages. Further, these methods can only handle blur induced by a camera imaging a

static planar scene which is not representative of a typical real-world scenario and

hence not very interesting.

The problem of extracting video from a single blurred frame is challenging

due to the fact that a blurred image can only reveal aggregate information about

the scene during exposure. The task requires recovery of frames which are tem-

porally consistent in the sense that they emulate recording coming from a high

frame-rate camera. All the frames should be sharp and the scene content must be

preserved throughout. In this paper, we present a novel solution to this interesting

and challenging problem using deep networks and reveal that a plausible tem-

poral sequence can be reconstructed. The deep architecture that we present can

extract latent motion representation from arbitrary motion blurred images and is

applicable to general motion caused by individual or combined effects of camera

motion, object motion and arbitrary depth variations in the scene. Our approach

is based upon the premise that a deep neural network can learn to incorporate

12



visual dynamics of the world by observing a variety of videos. Our network is

required to estimate spatio-temporal motion trajectories in an unsupervised man-

ner. We demonstrate that it is possible to judiciously extract relevant information

about a scene from its blurred image that suffices to solve the task of generating

a plausible realistic video from a single blurred image. Fig. 3.1 shows the videos

generated by our network and the corresponding input blurred images.

The main contributions of this work are:

• First ever attempt at extracting a sharp video from embedded motion infor-
mation in a single blurred frame.

• We propose an end-to-end architecture which learns ordered spatio-temporal
motion representation in an unsupervised manner.

• The capacity of our network is quite general and it can handle blur vari-
ations caused by camera motion, object motion, depth changes or even a
combination of these.

3.2 Proposed Architecture

Convolutional neural networks (CNNs) have been successfully applied for vari-

ous vision tasks on images but translating these capabilities to video is non-trivial

due to their inability to exploit temporal redundancies present in videos. Recent

developments in recurrent neural networks provide powerful tools for sequence

modeling as demonstrated in speech recognition Graves et al. (2013) and cap-

tion generation for images Vinyals et al. (2015). Long short term memory net-

works (LSTMs) can be used to generate outputs that are highly correlated along

the temporal dimension and hence form an integral part of our video generation

framework. Considering that we are working with images, the spatial informa-

tion across the image is equally important. Hence we use Convolutional LSTM

13
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Figure 3.2: Our architecture. The first step involves training the RVE-RVD for
the task of video reconstruction. This is followed by guided training
of BIE-RVD.

units Xingjian et al. (2015) as our building blocks, which are capable of captur-

ing both spatial and temporal dependencies since they employ convolutions for

input-to-state, state-to-state and output-to-state transformations.

The task of generating an image sequence requires the network to understand

and efficiently encode static as well as dynamic information for a certain period of

time. Although such an encoding is not clearly defined and hence unavailable in

labeled datasets, we overcome this challenge by unsupervised learning of motion

representation.

We accomplish the task of extracting a video from a single blurred image by

introducing a video autoencoder and a Blurred Image Encoder (BIE). The section

on BIE onwards was done by another member of the lab and the same can be

found in the paper Purohit et al. (2018) which we co-authored.

We propose to use video reconstruction as a surrogate task for training our

blur-to-video generator. Our hypothesis is that a successful solution to the video

14



reconstruction task will allow a video autoencoder to learn a strong and meaning-

ful motion representation which will enable it to impart spatio-temporal coherence

to the generated moving scene content.

We propose a video autoencoder in which the encoder utilizes all the video

frames to extract a latent representation. This is then fed to a video decoder

which estimates the frame sequence in a recurrent fashion. We build the recur-

rent encoder-decoder using ConvLSTM modules with improved motion capture

capabilities. The Recurrent Video Encoder (RVE) reads N sharp frames x1..N ,

one at each time-step. It returns a tensor at the last time-step, which is utilised as

the motion representation of the image sequence. This tensor is used to initialise

the first hidden state of another ConvLSTM based network called Recurrent Video

Decoder (RVD) whose task is to recurrently estimate N optical flows. Since the

RVE-RVD pair is trained using reconstruction loss between the estimated frames

x̂1..N and ground truth frames x1..N , the RVD must return the predicted video. To

enable this, a sharp frame (typically the central frame xN/2) is acted upon by the

flows. The estimated flows are individually fed to a differentiable transformation

layer to transform the sharp frame xN/2 to obtain the frames x̂1..N . In addition

to the reconstruction loss, a flow smoothness loss is also used. Once trained, we

have an RVD which can estimate sequential motion flows, given a particular mo-

tion representation.

In addition, we introduce another network called Blurred Image Encoder (BIE)

whose task is to accept blurred image xB corresponding to the spatio-temporal

average of the input frames x1..N and return a motion encoding, which too can

be used to generate a sharp video. To achieve this task, we employ the already

trained RVD to guide the training of BIE so as to extract the same motion infor-

mation from the blurred image as the RVE would from an image sequence. In

15



other words, the weights are to be learnt such that BIE(xB) ≈ RV E(x1..N). We

refrain from using the encoding returned by RVE for training due to lack of ground

truth for the encoded representation. Instead, the BIE is trained such that the pre-

dicted video at the output of RVD for the given xB matches as closely as possible

to the ground truth frames x1..N . Directly training the BIE-RVD pair is cumber-

some and may lead to the RVD learning to extract motion whereas this task is to

be performed by RVE/BIE in the manner we have framed the problem. RVE-RVD

training renders the learnt motion representation interpretable. We train the BIE

by coupling it with the trained RVD to perform the video generation task. This

ensures that the BIE learns to capture ordered motion information and the RVD

returns a realistic video.

A Fundamental Ambiguity: It is important to realize that estimating direction

of motion from a single blurred image is fundamentally ambiguous. For example,

one would get the same blurred image even if the temporal order is reversed. The

use of optical flow recurrence, enables the network to prefer temporally consistent

sequences, which prempts it from returning arbitrarily ordered frames. However,

the directional ambiguity stays. For a scene with multiple objects, the ambiguity

becomes more pronounced as each object can have its own independent motion.

Humans can (partly) resolve this ambiguity by seeing millions of videos during

their lifetime and thus understand how things move. Gong et al. (2017), which

estimates a single optical flow map for image deblurring dealt with this ambiguity

by constraining the optical flow to be non-negative in the horizontal direction dur-

ing dataset creation. Due to the unsupervised nature of our approach, we do not

enforce such a constraint. Nevertheless, we mitigate this issue by feeding to the

BIE a directionally-biased sharp frame in addition to the blurred frame by consid-

ering an even number of frames N and picking the N
2

th frame as the sharp frame.

The BIE then leverages the asymmetric blur around this sharp frame to estimate
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(a) Recurrent Video Encoder architecture. (b) Blurred Image Encoder architecture.

Figure 3.3: Architectures of BIE and RVE. The RVE is trained to extract a mo-
tion representation from a sequence of frames while the BIE is trained
to extract a motion representation from a blurred image and a sharp
image.

the direction of motion. The choice of an even number of frames to arrive at the

blurred image ensures that there is no true middle frame as it will be devoid of

directional information.

The overall architecture of the proposed methodology is given in Fig. 3.2.

The proposed architecture is fully convolutional, end-to-end differentiable and

can be trained using unlabeled high frame-rate videos. Our method requires only

sequences of sharp images captured at high frame rate for training, without the

need for optical flow supervision, which is challenging to produce at large scale.

We now describe design aspects of the different modules of our network.

3.2.1 Recurrent Video Encoder (RVE)

At each time-step, a frame is fed to a convolutional encoder, which generates a

feature-map to be fed as input to the ConvLSTM cell. Interpreting ConvLSTM’s

hidden-states as a representation of motion, the kernel-size of a ConvLSTM is

correlated with the speed of the motion which it can capture. Since we need to

extract motion taking place within a single exposure at fine resolution, we choose
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a kernel-size of 3 × 3. As can be seen in Fig. 3.3(a), the encoder block is made

of 4 convolutional layers with 3× 3 filters and stride of 2. The depth of the three

layers are 32, 64 and 128, respectively. A ConvLSTM cell operates on this feature

and augments it with memory from previous time-steps.

Overall, each module can be represented as hencn = enc(hencn−1, xn), where hencn

is encoder ConvLSTM state at time step n and xn is the nth sharp frame of the

video.

3.2.2 Recurrent Video Decoder (RVD)

The task of RVD is to construct a sequence of frames using the motion representa-

tion provided by RVE and the central frame (xN
2

) of the video sequence. The RVD

contains a flow encoder which utilizes a structure similar to the RVE. Instead of

accepting images, it accepts optical flows. The flow encoding is fed to a ConvL-

STM cell whose first hidden state is initialized with the last hidden state he,N of

the RVE. To estimate optical flows for a time-step, the output of the ConvLSTM

cell is passed to a Flow decoder network (FD). The flow estimated by FD at each

time-step is fed to a transformer module (T ) which returns the estimated frame

x̂n. The descriptions of FD and T are provided below.

Flow Decoder (FD): Realizing that the flow at current step is related to the pre-

vious one, we perform recurrence on optical flows for consecutive frames. The

design of FD is illustrated in Fig. 3.4. FD accepts the output of ConvLSTM unit

at any time-step and generates a flow-map. For robust estimation, we further per-

form estimation of flow at multiple scales using deconvolution (deconv) layers

which “unpool” the feature maps and increase the spatial dimensions by a factor

of 2. Inspired by Ronneberger et al. (2015), we make use of skip connections

between the layers of flow encoder and FD. All deconv operations use 4×4 filters
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and the conv operations use 3 × 3 filters. The output of the ConvLSTM cell is

passed through the a conv layer to estimate the flow fn,1, and a deconv layer. The

output of this deconv layer is concatenated with the upsampled fn,1 and the feature

representation coming from the encoder, to obtain a feature map at that scale. This

step is repeated 3 more times to obtain the flow maps at different scales (fn,2..4).

Transformer(T): This generates a new frame by transforming a sharp frame us-

ing the output returned by FD. It is a modified version of the Spatial Transformer

Layer Jaderberg et al. (2015), wherein instead of a single transformation for the

entire image as originally proposed in Jaderberg et al. (2015) this transformer ac-

cepts one transformation per pixel. Since we focus on learning features for motion

prediction, it provides immediate feedback on the flow map predicted by the op-

tical flow generation layers. Effectively, the decoder function can be summarized

as follows:

hdec1 = hencN (3.1)

hdecn , fn,1..4 = G(hdecn−1, fn−1,4) (3.2)

x̂n,1..4 = T (x̂N
2
, fn,1..4) (3.3)

for n ∈ [1,N] where hdecn is the decoder hidden state, fn,1..4 are the flows predicted

at n and x̂n,1..4 are the sharp frames predicted at different scales and G refers to a

recurrent cell of RVD.

3.2.3 Blurred Image Encoder (BIE)

The RVE discussed in section 2.1 learns to extract motion information in a man-

ner that allows the RVD to reconstruct the sequence of flows which is applied to
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Figure 3.4: Our Recurrent Video Decoder (RVD). This module recurrently gen-
erates optical flows which are warped to transform the sharp frame.
Flows are estimated at 4 different scales.

get frames in the same temporal order as the input. We make use of this trained

encoder-decoder couplet to solve the task of extracting video from a blurred im-

age. The trained decoder has learnt to generate optical flow for all time-steps from

the encoder’s hidden state. We now make use of this proxy network to solve the

task of blurred image to video generation.

The BIE is implemented as a convolutional neural network which specializes

in extracting motion features from a blurred image. The BIE is tasked to extract

the sequential motion in the image by capturing local motion, e.g. at the smeared

edges in the image. Moreover, the generated encoding should be such that the

RVD can reconstruct motion trajectories. The BIE has 7 convolutional layers with

kernel sizes as shown in Fig. 3.3(b). Each layer (except the last) is followed by

batch-normalization and leaky ReLU non-linearity.
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3.3 Cost Function

Both our network pairs (RVE-RVD and BIE-RVD) are end-to-end trainable and

we use the same cost function for training for both the tasks. This is achieved

by calculating the cost on the flows and frames estimated by the RVD. The loss

function quantifies the discrepancy between the target video and the one generated

by the network. Since the network is essentially estimating optical flows, we uti-

lize a cost function motivated by learning-free variational method Brox and Malik

(2011) which resembles the original formulation of Horn and Schunck (1981).

The data term assumes constancy over time of some image property and a spa-

tial (and often smooth) term models how the flow is expected to vary across the

image. At each time step, the data loss measures the discrepancy between inten-

sities of target frame and the output of transformation layer (obtained using the

the predicted optical flow field). Inspired by Sun et al. (2014), the data term is

expressed as a Charbonnier penalty Bruhn et al. (2005) C(s) =
√
(s2 + 0.0012):

a differentiable variant of the absolute value, and a robust convex function against

outliers and noise. The smoothness cost is in form of a total variation-loss-penalty

on the estimated flow maps: TV (s) =
∑

i |∇xs|+ |∇ys|. This constrains them to

be locally smooth and preserves the original image structure.

Coarse-to-Fine Estimation: Motivated by the approach employed in FlowNet

Dosovitskiy et al. (2015), we improve our network’s accuracy by estimating the

flow-maps and frames in a coarse-to-fine manner. At each time-step, four loss

terms are calculated using four optical flows fn,1..4 predicted at sizes which are

(1
8
, 1
4
, 1
2
, 1)th fraction of the original image resolution and applied on the corre-

sponding downsampled central frame using the transformation layers. Recon-

struction losses are enforced at each scale using suitably down-sampled ground

truth. Effectively, we use a weighted sum of loss to guide the information flow
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over the network, as given below.

Ln =
4∑

j=1

λj(C(x̂n,j − xn,j) + µTV (fn,j)) (3.4)

Here, j represents the scale, n represents time-step, and µ is the regularization

weight empirically set to 0.02. The relative weights for each scale λjs were

adopted according to the loss weight schedule suggested in Mayer et al. (2016)

which gradually trains the network from bottom loss layers to top ones, until

adding them up for further training.

3.4 Implementation Details

Preparing the training data is crucial for the proposed representation learning

problem. Recent works on image Nah et al. (2016) and video Su et al. (2016)

deblurring have built a training data set by recording videos captured at 240 fps

with a GoPro Hero camera to minimize the blur in the ground truth. We prepare

our training data from the same source, wherein 35 full videos were used for cre-

ating training sets and 5 full videos were reserved for validation and testing. Each

blurred image is produced by averaging 10 successive latent frames. Such an av-

eraging simulates a photo taken at approximately 25 fps, while the corresponding

sharp image shutter speed is 1/240. We extract 256 × 256 patches from these

image sequences for training. Finally, our dataset is composed of 105 sets, each

containing N = 10 sharp frames and the corresponding blurred image xB. We

perform data augmentation by random horizontal flipping and zooming by a fac-

tor in the range [0.2,2]. Our video-autoencoder is trained using Adam optimizer

with parameters β1 = 0.9 and the β2 = 0.999 and the learning rate is 2 × 10−4.
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The batch size was set to 10 and the entire training took 4.5 × 105 iterations to

converge. We then train the BIE-RVD pair with the same training configuration

and reduce the learning rate for RVD parameters to 2×10−5, which enables stable

training.

Sharp Frame Extraction: Note that during testing, to obtain the sharp image to

be fed to RVD and BIE, we use an off-the-shelf single image deblurring method

Nah et al. (2016), which is a multiscale CNN with residual connections. It is

known to give good results even on images with significant amounts of blur. The

output of Nah et al. (2016) is treated as the central sharp frame for our architec-

ture. At test time, resolution of directional ambiguity cannot be ensured as the

deblurring network may not necessarily provide the N
2

th frame as its output. Nev-

ertheless, our network returns a plausible video which is temporally consistent.

3.5 Experiments

We begin with quantitative evaluation of performance including ablation analysis.

This is followed by qualitative results on video generation from a single blurred

image.

3.5.1 Quantitative Results

We present experiments to analyze the various design decisions for training our

network. These experiments highlight the effect and advantages of these design

choices. We give average PSNR values for different configurations of our net-

work. We also provide details of these experiments and explain how the values

were arrived at. The reported PSNRs are calculated over 100 image sequences
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taken from 5 test videos selected at random from GoPro dataset Nah et al. (2016).

Direct Intensity Estimation: We experimented with training our video autoen-

coder network to directly estimate pixel intensities instead of optical flows but

found that it tends to learn an identity mapping. Such an autoencoder does not

help in our task of learning motion representations. Instead, we enforce motion

learning explicitly by predicting optical flows instead of intensities. The encoding

learnt by our method cannot be an identity mapping since robust optical flow pre-

diction is not possible without capturing motion features.

Non-recurrent CNN Instead of RVE: For the task of video reconstruction, we

also experimented by replacing our RVE with a CNN encoder. For this, we chose

a CNN architecture similar to BIE but the number of filters was reduced to match

the total number of parameters in our RVE. We fed stacked frames to this CNN-

RVD and trained it for the video reconstruction task. However, it was not quite

successful in reproducing local motion in dynamic videos and led to a lower PSNR

of 23.9 dB against 27.4 dB achieved using RVE. This observation reaffirms the ef-

fectiveness of ConvLSTM modules to capture spatio-temporal dependencies.

Joint BIE-RVD Training: We found that joint training of BIE and RVD from

scratch poses a formidable challenge and the performance is below par (PSNR

23.1 dB). Instead, our approach of training RVD for the surrogate task of ex-

tracting motion representation of short video sequences has the advantage that it

renders the learned motion representation interpretable. Once RVD is trained, the

BIE learns to extract the same motion information as RVE.

BIE sans Sharp Image: We tried training a network without a sharp image being

fed to the BIE. This network gave higher errors than the one which uses a sharp

image. We suspect that this is because, when the network is fed with a sharp

frame, it has a reference of which regions and which direction the blur is in.

Effect of Different Losses: We experimented with the effect of various losses
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while training the RVE-RVD pair for video reconstruction. In the first configura-

tion, both frame reconstruction loss and TV loss were calculated at only a single

scale. This model did not perform well on sequences containing complex motion,

and resulted in highly fluctuating optical flows (PSNR of 22 dB). In the second

configuration, we removed the single scale TV loss but found that the predicted

flows lost their spatial smoothness thus resulting in unrealistic results (PSNR 20

dB). When we include multi-scale frame reconstruction and TV loss with relative

weights as mentioned in section 2.4 (which is the final loss setting that we use),

we got a PSNR of 27.4 dB.
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Figure 3.5: Video generation on images blurred with global camera motion from
datasets of Lai et al. (2016) and Köhler et al. (2012). First row shows
the blurred images and second row, the generated videos.
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Figure 3.6: Our Results on motion blurred images obtained from dataset of Nah
et al. (2016). First row shows the blurred images and second row, the
generated videos.
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Figure 3.7: Our results on real motion blurred images obtained from dataset of
Shi et al. (2014). The first and third rows show the blurred images and
second and fourth rows show the corresponding generated videos.
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3.5.2 Qualitative Results

We also qualitatively evaluated our network’s ability to estimate a sharp video

from a single blurred image (both synthetic and real) collected from different

datasets.

Results on Camera Motion Dataset: For evaluating qualitative performance on

videos with camera motion alone, we tested our network’s capability to recon-

struct videos from blurred images taken from datasets of Gong et al. (2017), Köh-

ler et al. (2012) and Lai et al. (2016), which is commonly used for benchmark-

ing deblurring techniques. Fig. 3.5 shows the result of our algorithm on images

blurred using camera motion on Köhler et al. (2012) and Lai et al. (2016) datasets.

Results on Go-Pro Dataset: In Fig. 3.6, we show results obtained on test blurred

images from dataset of Nah et al. (2016), which are synthetically created by av-

eraging a number of frames. In addition to handling global camera motion, our

method is able to generate realistic videos even in complicated scenarios includ-

ing dynamic scenes as well which are very challenging for traditional deblurring

approaches.

Results on Blur Detection Dataset: In Fig. 3.7, we show videos generated from

real blurred images taken from the dataset of Shi et al. (2014) which contains dy-

namic scenes with large motion. The results establish that our network can sense

direction and magnitude even in severely blurred images.
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CHAPTER 4

Blur detection and segmentation

4.1 Overview

Technological advancements have revolutionized imaging industry but it is still a

challenge to prevent or remove degradations that occur during image capture. To

capture a well-defined frame, there is typically a compromise between aperture

size and exposure time. A large aperture leads to reduced depth of field which

can result in some regions being optically defocused in the image. To bring the

entire 3D scene into focus, one must select a small aperture, and compensate for

the reduced intensity by allowing a larger exposure time. But this increases the

chances of motion blur if object and/or camera are in motion, which is often the

case in cameras which are handheld or mounted over moving platform. Blur also

has an aesthetic value in professional photography, as it is often used to highlight

the salient regions in a static scene (defocus blur) or dynamic scene (motion blur).

Although blur has traditionally been regarded as an undesirable effect, it is in-

directly linked to higher level scene information. A few existing works Favaro

and Soatto (2004), Deng et al. (2012) have used motion blur itself as a cue for

segmentation, while others have exploited defocus blur as a cue to estimate depth

[Chaudhuri and Rajagopalan (2012),Favaro et al. (2003)] or segment salient re-

gion and foreground from a scene. For object detection, the segmented sharp re-

gions can be extracted for efficient region proposal and robust object localization

[20,26]. Other applications include image quality assessment, photo editing and



image restoration. We show applications in image matting and blur magnifica-

tion. Local blur detection, however, is a highly challenging task, not only because

the estimated blur values vary spatially, but also because the estimated map con-

tains ambiguities Park et al. (2017), where the appearances of two regions with

different amounts of defocus can be very similar. Traditional approaches of de-

termining the amount of blur only based on the strength of strong edges lead to

overconfidence and errors. Moreover, proper thresholds need to be selected for

such methods to perform well. These limitations call for more reliable and robust

descriptors for defocus estimation. Recently, Park et al. (2017) experimentally

determined that deep features extracted from an image patch possess much more

discriminative power with regard to blurry and sharp regions as compared to other

individual hand-crafted features.
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Figure 4.1: Our Blur-detection and Segmentation framework

In this paper, we propose to use end-to-end deep Convolutional Neural Net-

works (CNNs) to learn powerful features relevant to blur. Moreover, our method

utilizes global context information to mitigate the ambiguity between blurred re-

gions and sharp but homogenous regions in a given image. The formulation makes

sure that estimates of two sub-networks do not corrupt into each-other but con-

tribute constructively. The obtained blur-detection map is then passed through a

MRF based framework to yield an accurate segmentation map.
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The main contributions of this work are:

• This is the first end-to-end learning based framework for the task of blur
detection from a single image, which can handle both defocus and motion
blur.

• We train two CNNs to perform detection at both patch-level and image-
level, and merge their estimated detection maps to obtain a robust probabil-
ity of blur at each pixel.

• The method offers a fully automatic approach to perform sharp region seg-
mentation and matting tasks using MRF-based formulation.

4.2 Related works

Classical depth from defocus (DFD) algorithms Chaudhuri and Rajagopalan (2012),

Favaro et al. (2003) assume a stationary camera and a static scene, and use mul-

tiple images captured under different lens settings to recover the depth map using

defocus metrics.

Tai and Brown (2009) estimates the defocus map by using a relationship be-

tween contrast and the image gradient. The method Zhuo and Sim (2011) extracts

image gradients from both image and re-blurred images to obtain the defocus

map. Key approaches which address only motion blur detection are: Chakrabarti

et al. (2010) proposed 1-D box filters for spatially varying motion blur segmen-

tation.Wang et al. (2017) proposed alternating between two tasks of blur kernel

estimation and blur segmentation. However, their method is restricted to motion

blur. The approach in Su et al. (2011) handles both types of blur by defining a

singular value distribution feature and alpha-channel extraction step.

Learning based approaches like Liu et al. (2008) and Shi et al. (2014) propose

to use several hand-designed local blur features dependent on local patch prop-
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erties like power spectrum, histogram and gradient profiles and feed them to a

classifier. Shi et al. (2015) proposed a defocus discriminating feature by directly

finding a mapping between sparse edges and blur strength. But the method does

not extend well to images with large amounts of defocus blur.

A recent method Park et al. (2017) proposed a shallow CNN to obtain deep

feature representations of an image patch. They found that such patch level repre-

sentations are useful but not sufficient in themselves for robust blur detection and

hence they concatenate handcrafted features along with these representations for

the task. Moreover, their method does not address motion blur.

Our method makes no assumptions about the scene and does not depend on

hand-designed features, which enables it to overcome the limitations of prior

works. Our method uses two sub-networks that integrate global and local esti-

mates to enable end-to end blur detection from a single image. The deep features

learnt by our method are generalized to both motion and defocus blur, as demon-

strated in the experimental section.

4.3 Proposed Approach

Training Deep Neural Networks is data-intensive. However, to the best of our

knowledge, the blur detection benchmark built by Shi et al. (2014) is the only

database that is publicly available for the blur segmentation task and it contains

only 1000 labeled examples. A network trained using such limited data may suffer

from overfitting and not generalize to other scenes and all degrees of motion and

defocus blur. To circumvent this issue, we propose to utilize two sub-networks.

The first one is a patch level classification network trained on a large dataset
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of small image patches (30 × 30) obtained from synthetically blurred images.

The second is a parametrically efficient image level regression network, which is

trained using the dataset Shi et al. (2014) to estimate a segmentation map. The

details of dataset generation are described in section 4.4.

The map obtained after the patch-aggregation step contains coarse boundaries

and global inconsistencies, since the patch aggregation step predicts a label at

each patch independently. Generally, the edges in this map do not align with the

boundaries in the input image. Also, this process does not ensure consistency

among neighboring pixels’ labels, which may lead to assignment of opposite la-

bels to neighboring patches on a sharp object if homogeneous regions are present

in the vicinity. Such failures are avoided by integrating the blur probabilities ob-

tained from the second sub-network.

The work on Image level network and segmentation was done by other mem-

bers of the lab but we discuss them here for completeness.

4.3.1 Patch Level Classification Network

Training a network at patch level makes the task tractable since the number of

parameters are small and the blur can safely be assumed to be constant within the

patch.

The proposed network is constructed as shown in Fig. 4.1. Each ConvBlock

has 2 convolutional layers containing filters of size 3× 3. The first layer is a con-

volutional layer with 32 filters with stride of 1. This is followed by a ReLU layer.

The output is passed to another convolutional layer with a stride of 2, followed by

a batch-normalization layer and another ReLU layer. The two subsequent Con-

vBlocks carry the same structure but have 64 and 128 filters respectively. The
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third ConvBlock is followed by a fully connected layer that brings down the di-

mensions to 1. Its output is passed through the sigmoid function to obtain the

probability of patch being blurred.

Aggregating the blur probabilities for patches distributed over the input image

forms a coarse estimate of segmentation map. During testing, this process involves

extraction of overlapping patches from the input image and passing them through

the network to get their corresponding probabilities. This estimated probability is

assigned to all the pixels contained in the patch, while averaging the values in the

pixels being overlapped by other patches.

INput GT Park et al. (2017) Our Result

Figure 4.2: Qualitative comparison of various blur detection algorithms on par-
tially motion blurred scenes.

4.3.2 Image Level Regression Network

We propose to enforce global consistency of the labels by training an end-to-end

regression network at the image level. The goal of this network is to learn the
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mapping between an image and its corresponding blur segmentation-map. The

targets to train this network are masks with binary values assigned to each pixel,

representing blur/sharp label. In Long et al. (2015), it is suggested that for seg-

mentation, image-wise and patch-wise training are equally effective and the for-

mer is faster to converge.

To this end, we train a fully convolutional encoder-decoder network with skip

connections, inspired by Isola et al. (2017), which combines low-level feature

maps with higher-level ones, enabling precise localization. The original archi-

tecture Isola et al. (2017) has demonstrated capability of performing a variety

of image-to-image translation tasks, since it can process image of arbitrary di-

mensions while encoding spatial information thoroughly and efficiently. Such a

network can be trained using the dataset provided in Shi et al. (2014). It demon-

strated that when the training data is limited in size, inclusion of adversarial loss

term ensures that the estimated segmentation-map is both semantically meaning-

ful and close to the ground truth.

To train the network for the task of estimating a blur segmentation-map from

a single image, we make minor modifications to the original architecture of Isola

et al. (2017). Since our targets are binary images, we replace the original L1

loss with the binary cross entropy loss at each pixel, which requires changing the

network’s final layer activations to sigmoid. Also, their network includes an in-

creasing number of filters with each convolution layer of stride 2. We, however, fix

the number of filters to 64 throughout the network. This results in significant re-

duction in number of parameters. This choice was motivated by two observations.

Firstly, the network can be allowed to lose some information during downsam-

pling because the low level features can still be accessed directly through skip

connections in the subsequent deconvolution layers. Secondly, the task at hand
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does not require learning of very deep hierarchical features (generally needed for

high-level vision tasks like depth estimation or object detection), so a large num-

ber of feature maps in higher layers are not critical for good performance. The

modified network has fewer parameters and can be trained to obtain a reasonable

accuracy on the test set.

4.3.3 Final Detection and Segmentation

The outputs of the two networks have complimentary properties, and hence, a

meaningful way of merging the blur probabilities returned by the two networks

is pixel-wise multiplication b(p) = b1(p) ∗ b2(p). This formulation promotes

constructive combination of the two estimates, since the outliers of one result

generally do not appear in the other. We find that the patch-level network is able to

detect blurred regions with sufficient accuracy. However, sharp but homogeneous

regions are also flagged as blurred in this map and the edges are not aligned On

the other hand, the image level regression network’s map contains refined edges

and is able to correctly classify homogeneous regions, but sometimes misclassifies

blurred regions as sharp too.

To obtain a binary segmentation-mask, we feed the probabilities b(p) to an

MRF formulation. The MRF cost is minimized using an off-the-shelf graphcut

algorithm Boykov and Kolmogorov (2004) We define the pairwise cost (between

neighbor pixels x and y) as β × (1 − α|b(x)−b(y)|), where |.| denotes the absolute

value, and β and α are positive scalars. We consider a regular 4-connected grid

while calculating cost for a particular pixel. Note that we perform an edge aware

optimisation as the smoothness cost is made 0 at edge pixels.
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Input GT Shi et al. (2015) Wang et al. (2017) Our Result

Figure 4.3: Qualitative comparison of various blur detection algorithms on par-
tially motion blurred scenes.

4.4 Dataset and Implementation Details

As mentioned earlier, we utilize the blur segmentation dataset provided in Shi

et al. (2014) to train the image level regression network. It contains 1000 images

with human labelled blur regions, among which 296 are partially motion-blurred

and 704 are defocus-blurred. Since we are limited by the number of training sam-

ples available in the existing benchmark, we only divide it into training and test

sets (90%-10%). For training the regression network, each image in a batch was

augmented by randomly applying horizontal and vertical flips together with ran-

dom rotation and color jittering. We used the same hyper-parameters for training

as described in the original paper Isola et al. (2017).

The dataset for training classification network is created using sharp images

that are blurred using a variety of synthetically generated defocus and motion blur

kernels. Our training examples come from 500 all-in-focus images containing di-

verse scenes and textures obtained from Flickr dataset Huiskes and Lew (2008)

and 300 sharp images selected from the ILSVRC dataset Krizhevsky et al. (2012) .

To simulate motion blur, we generate 1000 realistic motion blur kernels by follow-
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ing the approach described in Schmidt et al. (2013). Optical blur was simulated

using Gaussian blur kernels with zero mean and variance σ2 . σ is varied from

0.5 to 4 in steps of 0.2 to simulate a wide range of blur encountered in practice.

Each image I is convolved with N blur kernels randomly selected from our set to

generate N blurred images as: Bi = I ∗ ki where i ∈ [1, N ]. We extract 2 × 105

image patches of size 30× 30 from random locations in these images. For natural

images. a large fraction of patches are likely to be textureless and hence would

not contain any information to classify them as either blurred or sharp. Hence we

select only those patches for training whose entropy (a measure of texture-ness)

is greater than 4.5 (empirically selected threshold).

We divide this dataset into 80% train and 10% each for both test and validation

purpose. The network is implemented using the Torch Library. We trained the

model using SGD with a learning rate of 10−3 and learning rate decay of 10−7.

Early stopping criteria was used to avoid overfitting and the training took 6 hours

on a single NVIDIA Titan X GPU.

4.5 Experiments

We verify the reliability and robustness of our algorithm by testing on 100 test

images from the Shi et al. (2014) dataset.

In Fig.4.1 , we show the outputs of the two networks. We observe that the out-

put of the image level network lacks local accuracy, even though it is semantically

meaningful. The output of patch aggregation is locally more consistent but of-

ten assigns higher blur probabilities to homogeneous patches present in the sharp

regions. Also, as expected, its result generally contains rugged edges which are

misaligned with the scene boundaries. The detection-maps obtained after merging
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the two outputs are devoid of these errors as can be seen in Figs. 4.2 and 4.3. We

utilize this detection map and perform binary segmentation using the Graph-cut

optimization. The segmentation results returned by our algorithm are very close

to the ground truth.

4.5.1 Comparisons with existing methods

We compare our algorithm to the results of Shi et al. (2014), Shi et al. (2015)

,Zhuo and Sim (2011) and Park et al. (2017) using the implementations available

on authors’ webpages. Fig. 4.2 shows qualitative comparisons on three real im-

ages containing defocus blur of varying degree. Because the blur detection dataset

contains only binary masks, quantitative results are obtained using binary blurry

region masks from each algorithm. For binary segmentation, we apply a simple

thresholding method to their defocussed maps. The best threshold for each ap-

proach is found by performing a linear search and picking the value which yields

lowest error. All these examples show that our approach can effectively segment

the image into defocused and focused regions.

In Fig.4.3 we demonstrate our method’s capability to handle motion blur and

compare with existing approaches. It can be observed that the detection maps that

result from our method are significantly more accurate than prior art.

4.5.2 Applications

The estimated segmentation maps can be used for different applications. We uti-

lize our defocus maps for blur magnification and matting as shown in Fig. 4.4.

The results are quite pleasing
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(a) (b) (c) (d)

Figure 4.4: Matting and blur magnification: Eagle from (a) is transferred to (b)
using matting. Background blur in (c) is magnified in (d)

Blur Magnification can be used to highlight the foreground by amplifying the

blurriness of the background. This is done by using our blur-based segmentation-

map as a mask for the foreground layer while blurring the remaining image with

a Gaussian kernel. The two layers are then merged together.

Image Matting is another application which stands to benefit from robust

foreground segmentation. The resulting map M can be used to supply automatic

trimaps for challenging images. Morphological erosion and dilation can be per-

formed over the results to obtain a foreground and trimap regions in any defocused

image. This technique was used to perform automated matting on real examples.

We use closed-form matting algorithm Cho et al. (2016), which has been success-

fully applied on blurred images.
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CHAPTER 5

Conclusion and Future Directions

In thesis we primarily addressed two problems in Computer vision namely ex-

tracting a video from a motion blurred image and segmentation and detection of

blur from images. In this chapter, we summarize the contributions made in the

thesis. This is followed by future directions that emerge from these works.

5.1 Summary

In Chapter 2 we discuss the relevant concepts for deblurring, CNN , RNN and

STN.

In Chapter 3 we introduced a novel methodology for video generation from a

single blurred image. We proposed a spatio-temporal video autoencoder based on

an end-to-end differentiable architecture that learns motion representation from

videos in a self-supervised manner. The network predicts a sequence of optical

flows and employs them to transform a central frame and return a smooth video.

Using the trained video decoder, we trained a blurred image encoder to extract

a representation from a single blurred image, that mimics the representation re-

turned by the video encoder. This when fed to the decoder returns a plausible

sharp video representing the action within the blurred image. The overall setup

helps to harness the motion information embedded in a motion blurred frame to

generate a temporally ordered sharp video that attempts to reconstruct the scene

content explored by the camera trajectory during exposure. The potential of our



work can be extended in a variety of directions including blur segmentation, video

deblurring, video interpolation etc.

In Chapter 4 we proposed an automated method to obtain a blur segmentation

map from a single image. The blur probability at each pixel was inferred jointly

using two sub-networks and merged to obtain an approximate blur-map. An MRF

based framework was introduced to obtain a dense segmentation coherent with the

boundaries of blurred regions. We validated our proposed framework on images

from a publicly available dataset. As future work, we will explore the scope of

our framework to perform space-variant deblurring.

5.2 Future Directions

We found in practice that the our encoder-decoder modules were able to general-

ize well to wide variety of tasks when properly trained. In this section we discuss

some directions that we are exploring.

Single Image Deblurring: In our work on extracting a video from a motion

blurred image in Chapter 3, we made use of Nah et al. (2016) to obtain a sharp

image. To make the algorithm self-reliant, we are experimenting with a modified

version of our encoder-decoder modules without recurrence for the task of Single

Image deblurring.

Video Deblurring: We are also exploring the use of the our recurrent encoder-

decoder architecture for the task of video deblurring. Video deblurring can benefit

a lot by posing the problem with recurrence between frames. This way, the net-

work can make use of redundancy of pixel information across frames and improve

the deblurring performance.
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